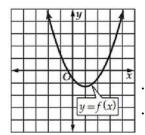
تم تحميل وعرض المادة من

موقع منهجي منصة تعليمية توفر كل ما يحتاجه المعلم والطالب من حلول الكتب الدراسية وشرح للدروس بأسلوب مبسط لكافة المراحل التعليمية وتوازيع المناهج وتحاضير وملخصات ونماذج اختبارات وأوراق عمل جاهزة للطباعة والتحميل بشكل مجاني

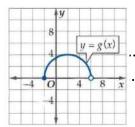
حمل تطبيق منهجي ليصلك كل جديد

ساعتان ونصف	التاريخ : الزمن : اليوم :	الدرجة ال	جیا د تا Ministry of E	ducation طخة العربية السعودية KINGDOM OF SAUDI AF	یم المال	مملكة العربية ال وزارة التعلب دارة العامة للتعل المدرسة الثانوية	الإ
	ي الأول لعام ١٤٤٦ هـ رقم الجلو	م) الفصل الدر اس الصف :	(مسار ات/عا	بار مقرر ریاضیات ۳		الطالبة الرباع	اسد
بر . المدققة وتوقيعها	المراجعة وتوقيعها		المصححة	درجة	-	الأسئلة	
*		6.33				الأول	
						الثاني	
						الثالث	
٣.				الصحيحة	ختاري الإجابة	<u>ال الأول :</u> ا	السو
				ي هو :	$g(x) = \frac{8x}{\sqrt{2x+6}}$	مجال الدالة	,
	<i>x</i> ≥ −3	<i>x</i> >	· 3 [ē	<i>R</i> − {3}	∵	-3 } ∫	,
8 9		2 هي	$\log_3 x - 4$	الوغارتمية log ₃ y	ختصرة للعبارة ا	الصورة الم	
4 g(x)	$\log_3 \frac{x^2}{y^4}$	$\log_3 x$	$-2y^{-4}$ ε	$\log_3 \frac{2x}{4y}$	ب log ₃	$\frac{y^4}{x^2}$	۲
-8 -4 O 4 8x			$g(x)=\frac{1}{2}$	[x] طبيقه على الدالة	بندسي الذي يتم ت	التحويل اله	٣
-8	انعكاس حول y	رأسي د			ع رأسي ب		
الشكل ١		1		g(x) = والدالة (£
	x-1 -2	ا د x + 1			<u>ا ب x - 1</u>		
	(2 E 1			دام فترة على الصورة		1.	٥
	[-3,5]	7 (-3	ج (5 ,		,3,-] ب لقيمة العظمى الم		
	-3	د	3 &	1	ب ا	-1 j	٦
O x					ا نياقص الدالة في		
	(-1,1)	ے (1,	∞) ह	(-∞,1)	∞—) ب	<u>,∞)</u> i	٧
$f(x) = x^3 - 4x$			I		صفار الدالة هي	(شکل ۲) أ	
الشكل ٢	-2,2	_ د	·2,0,2	-2,0	ب	2,0	۸
		<u> </u>	1	: (a(x هو	$=\sqrt{t-3}$	مجال الدالة	
	[−3,∞)	7 (-0	∞, −3] [₹	[3,∞)		-∞,3] ∫	٩
	<u> </u>	•	•		·	•	


\$ y					ببار التماثل على المند			فر	١.
	غير متماثل	٦	متماثل حول محور y	٦	متماثل حول نقطة الأصل	ŀ	متماثل حول محور x	١	``
Ox			او ي	تسا	g(2) فإن $g(x)$	= 23	$x^2 + 3x - 5$ ا کانت	إذ	
$x=y^2-3$ الشكل 3	2	7	9	٦	10	Ţ	14	Í	11
g(x) = x + 4			[1,2] تساوي	زة	على الفة $g(x) = x$	الة 2.	وسط معدل التغير للد	من	17
y y	5	7	4	ح	3	·ſ	2	j	' '
					هو	f ($(x) = \sqrt{x}$ دی الدالة	مد	١٣
	(−∞, 0]	7	[0,∞)	ح	Q	·	R	j	' '
f(x) = x					الظاهر هو	دسي	نكل ٤) التحويل الهنا	i)	
الشكل ٤	تمدد أفقي	د	تمدد رأسي	٦	انسحاب رأس <i>ي</i>	ŀ	انسحاب أفق <i>ي</i>	Í	١٤
					$g(x) = x^2 +$	لة 3	دالة الرئيسة الأم للدا	ال	١٥
	التكعيبية	٦	التربيعية	٦	المحايدة	ŗ	الثابتة	Í	, 5
			ر هو	f (x)	$= \boldsymbol{x^2} + \boldsymbol{x} , \boldsymbol{g}(\boldsymbol{x})$) = 9	صل جمع الدالتين x(حاد	١٦
	$10x^2 + 10x$	7	$10x^2 + x$	٦	$x^2 + 8x$	Ļ	$x^2 + 10x$	Í	' '
			(fog)(2) تساوي	إن ($f(x) = \sqrt{x + 1}$	1,	g(x) = 4x کانت	إذا	١٧
	8	د	$4\sqrt{3}$	ح	3	·	$\sqrt{3}$	j	' '
				= ,	g(x) هي $f(x) =$	$=\frac{3x}{2}$	<u>5-</u> لة العكسية للدالة	الدا	
	$\frac{2x-5}{3}$	٦	2x + 5	٤	$\frac{3x+5}{2}$	ŀ	$\frac{2x+5}{3}$	Í	١٨
						j	$f(x) = x^4 + x^2$ لة	الدا	
	غير متماثلة	1	ليست زوجية ولا فردية	ح	فردية	J·	زوجية	Í	19
					🗴 تساوي	هو	المعادلة $8^{2}=8^{3}$	حل	۲.
	6	د	7	٦	8	ŗ	9	j	, ,
					2 7 هو	K+2	$\geq rac{1}{32}$ المتباينة	حل	۲۱
	$x \ge -7$	د	$x \ge -3$	٤	$x \ge 3$	Ļ	$x \ge 7$	١	
$f(x) = \log_b x$					$f(x) = \mathbf{l}$	og _b	χ كل ه $)$ مجال الدالة	(شـ	4 4
(1,0) $(b,1)$	(-∞, 0]	7	[0 ,∞)	٦	R ⁺	J·	R	١	
$O\left(\left(\frac{1}{b},-1\right)\right)$						الدال	کل ٥) يوصف منحنو	(شـ	
الشكل ه	غیر متصل و غیر متباین	1	غیرمتصل و متباین	٥	متصل و غیر متباین	·ſ	متصل ومتباين	Í	77
-			· ·		· ·				

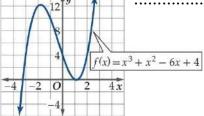
						ـة log ₃ 81 تساوي	قيم	7 £
7	7	6	ح	5	ب	4	j	1 4
						log ₁₀ (-10	0)	70
غير معرف	٦	-10	ح	10	ب	1	Í	, 5
		log ₃ 49 تساوي	يبية	log فان القيمة التقرب	₃ 7	≥انت 1.7712 ≈	اذا	77
5.3136	٦	4.7712	ح	3.5424	J •	3.7712	Í	, ,
				و $\log_2(x^2 -$	4) =	$=\log_2 3x$ المعادلة	حل	**
4	د	2	ح	-1	J·	-2	Í	1 4
		الاسية	ورة	} log ₂ تكافيء الص	3 =	سورة اللوغاريتمية 3	الم	۲۸
$2^3 = 8$	١	$3^2 = 8$	ح	$8^2 = 64$	ŀ	$3^2 = 9$	Í	' '
				عشرية	ِقام ح	لة 7log لاقرب 4 ار	قيم	4 9
0.0686	١	0.7521	ح	0.8400	ŀ	0.8451	Í	11
		و	ف هر	ب جزء من عشرة الاأ	لأقرد	$3^x=15$ المعادلة	حل	۳.
2.4650	٦	0.6990	ح	2.5411	ب	0.4057	j	1 •

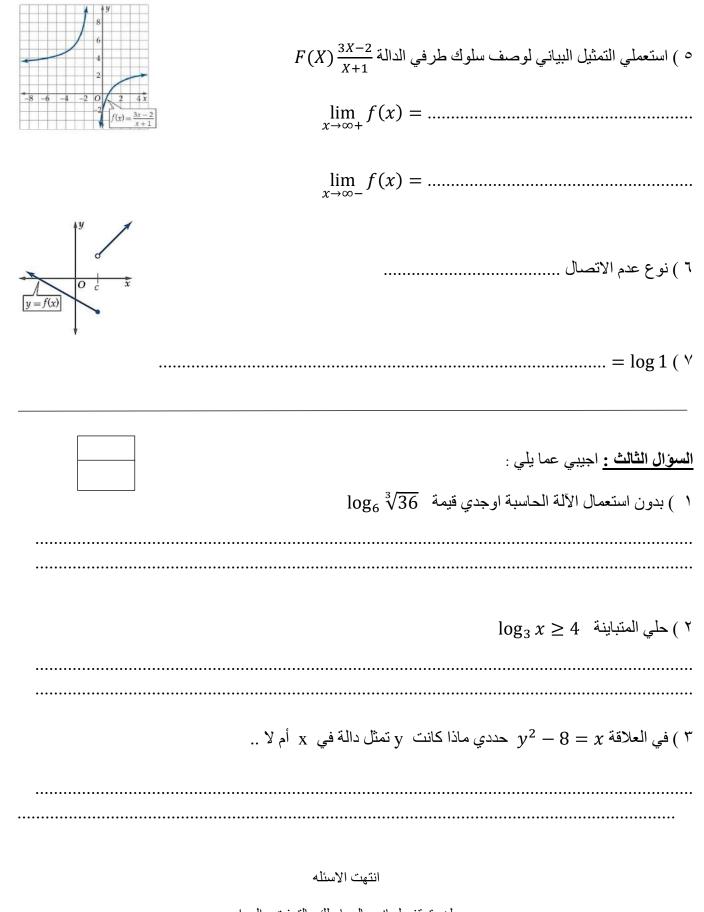
١.


السؤال الثاني: أكملي الفراغات بما يناسبها

.... الدالة العكسية للدالة $y=x^3-9$ هي

٢) من التمثيل البياني هل الدالة العكسية موجودة؟ برري إجابتك.


.....



٣) مجال الدالة

مداها

y المقطع (٤

انتهت الاسئله ولن يتوقف لساني بالدعاء لكِ بالتوفيق والسداد اللهم انفعنا بما علمتنا وعلّمنا ماينفعنا وزدنا علمآ

المادة: رياضيات الصف: ثالث ثانوي

الشعبة: اليــوم:

التاريخ: -٤-١٤٤٦هـ الفترة: الأولى

الفسرة. الوقى الزمسن: ثلاث ساعات

بسم الله الرحمن الرحيم وزارة التعليم

المملكة العربية السعودية وزارة التعليم إدارة التعليم بمنطقة ال مكتب تعليم الثانوية الأولى العام

اختبار الفصل الدراسي الأول (الدور الأول) للعام الدراسي ٢٤٤٦هـ

W-5-	_	
		$\overline{}$
4 -		
Ζ.	•	\

اسم الطالبة
رقم الجلوس

اسم المدققة	اسم المراجعة وتوقيعها	اسم المصححة ال	الدرجة		1, 11
اسم المدققة وتوقيعها			وتوقيعها	كتابة	رقما
					س ۱
					س۲
					س۳
					س ٤
					المجموع

(ابنتي الحبيبة استعيني بالله وتوكلي عليه فبسم الله)

السؤا	ال الأ	أول / اختاري الإجابة الم	سحيا	حة من الخيارات التالية				٥	۱۵ درجة	
,	باسـ	متعمال رمز الفترة يمكن ك	كتابة	$x \leq 16$ المجموعة التالية	<:	8— على الصورة		;		
	a	[8, 10)	b	[5, 16]	с	(-8, 16]	d	(5,14)		
۲	اِذا كانت $f(x) = x^2 + 8x - 24$ قيمة فإن أ $f(6)$ هي									
	a	90	b	40	С	60	d	30		
٣	الدا	$f(x) = x^4 + 2$		تكون دالة						
	533	950.470		ليست زوجية ولا فردية	1000	زوجية	d	غير ذلك		
	قيم	لة الاختلاف المركزي للقم	لمع الر	$rac{(1)^2}{2}=1$ زائد الذي معادلته	(x+5	$\frac{(y-4)^2}{48} - \frac{1}{2}$				
٤	a	$\frac{65}{\sqrt{18}}$	b	$\frac{\sqrt{84}}{\sqrt{48}}$	С	$\frac{\sqrt{8}}{74}$	d	$\frac{\sqrt{58}}{7}$		
0	الدا	$=b^x$ الة على الصورة	f(x)	ميث $b>1$ ، هي دال ،	: ق					
J	a	اضمحلال أسي	b	نمو أسي	с	لوغاريتمية	d	كثيرة حدود		
٦	إذا	$f(x_1) = f(x_2)$ کانت	f فإ	ن الدالة تكون						
,	a	متزايدة	b	ثابتة	c	متناقصة	d	غير ذلك		
v	الدا	f(x) = x + 4	تما	ثل إزاحة أربع وحدات إلى		-				
	a	الأسفل	b	الأعلى	c	اليسار	d	اليمين		
٨	$2^x = 8^3$ حل المعادلة									
	a	9	b	15	c	20	d	10		

						r				
٩	الصورة اللوغاريتمية 3 = 3	تكافئ الصورة الأسية log_2 {			- Taraban					
	$8 = 2^3$ a	$9 = 3^4$ b	с	$5^2 = 10$	d	$3^2 = 2$				
	العبارة $log_2 x - 5 log_2 y$ تكافئ									
1.	$log_2 \frac{x^4}{y^5}$ a	$-\log_2(x-y)$ b	с	$log_2 x^3 y^6$	d	$log_2 x^5 y^8$				
11	إذا كانت معادلة القطع تساو	$ \underbrace{\frac{(x-1)^2}{36} - \frac{(y+5)^2}{9}}_{\text{el}} = 1 $	ن مراً	کزه هو						
15. 42.	(1, -5) a	(6,2) b		(1, -6)	d	(3,6)				
١٢	باستخدام المميز فإن المعادلة	$y + y^2 + 4x - 5y - 8$	3x	$4x^{2}$ —						
38.8	a قطع مكافئ	b قطع ناقص	с	قطع زائد	d	دائرة				
- miner	تساوي $4^{rac{1}{2}}=2$									
17	$\log_5 3 = \frac{1}{3} \mid a$	$\log_4 2 = \frac{1}{2} \mid b$	c	$\log_2 7 = 4$	d	$\log_5 3 = 5$				
	قيمة 4 log ₁₆ هي			_						
١٤	y = 6 a	$y = \frac{1}{2} b$	с	y = -2	d	y = 3				
10	باستعمال الآلة الحاسبة فإن قيمة 5 log									
, 0	3,5540 a	0,6990 b	c	2,4201	d	1,5689				

جة	٥١در	وًال الثاني/ اختاري علامة (√) للعبارة الصحيحة وعلامة (♥) للعبارة الخاطئة	السؤ
خطأ	صح	مجموعة الأعداد الكلية هي {1,2,3,}	١
خطأ	صح	من خصائص الدالة اللوغاريتمية أن مداها مجموعة الأعداد الحقيقة الموجبة فقط	۲
خطأ	صح	$f(x) = \llbracket x rbracket$ يرمز لدالة القيمة المطلقة بالزمر	٣
خطأ	صح	$\displaystyle \lim_{x o c} f(x) eq f(c)$ تكون الدالة متصلة إذا كان	٤
خطأ	صح	إذا وجدت قيمة عظمى محلية للدالة وكانت أكبر قيمة في مجالها سميت قيمة عظمى مطلقة	٥
خطأ	صح	x الدالة المتباينة كل قيمة x ترتبط بقيمة واحدة y ولا توجد قيمة y ترتبط بأكثر من قيمة	٦
خطأ	صح	$b^y=x$ صحيحة الذي يجعل المعادلة y الذي يجعل المعادلة	٧
خطأ	صح	تكون العبارة دالة إذا لم يقطع أي خط رأسي تمثيلها البياني في أكثر من نقطة	٨
خطأ	صع	لوغاريتم القوة يساوي حاصل ضرب الأس في لوغاريتم أساسها	٩
خطأ	صح	U بأخذ منحنى الدالة التربيعية $f(x)=x^2$ شكل حرف	١.
خطأ	صح	القطوع المخروطية هي الأشكال الناتجة عن تقاطع مستوى ما مع مخروطين دائريين قائمين متقابلين بالرأس	11

خطأ	صح	متوسط معدل التغير بين أي نقطتين على منحنى الدالة f هو ميل المستقيم المار بهاتين النقطتين	۱۲
خطأ	صح	من خصائص دالة الاضمحلال الأسي أنها متزايدة	17
خطأ	صح	إذا كانت $B^2 - 4AC < 0$ يكون القطع قطع زائد	١٤
خطأ	صح	$\sin(A+B) = \cos A \cos B - \sin A \sin B$	10

٥ درجات	لثاني	وال الثالث/ اختاري للعمود الأول ما يناسبه من العمود ا
$\cot \theta$	١ ١	$\sin \theta =$
$2 \sin \theta \cos \theta$	۲	$\tan\left(\frac{\pi}{2}-\theta\right)=$
$\pm \sqrt{\frac{1 - COS\theta}{1 + COS\theta}}$	٣	cos(A - B) =
$\frac{1}{\csc \theta}$	٤	$\tan \frac{\theta}{2} =$
$\cos A \cos B + \sin A \sin B$	٥	$\sin 2\theta =$

٥ درجات			الرابع / اجيبي عن المطلوب	السؤال
			اثبتي صحة المتطابقة المثلثية التالية إذا كان $\cos 90 = 0$, $\sin 90 = 1$ $\cos (90 - \theta) = \sin \theta$	١
			اكتبي معادلة الدائرة التي مركزها (1,2–) قطرها 8	۲
	الرأس معادلة الدليل	الاتجاه البؤرة معادلة محور التماثل طول الوتر البؤري	حددي خصائص القطع المكافئ $(y+5)^2 = -12(x-2)$	٣
			أوجدي قيمة n من المعادلة التالية $4^{2n-1}=64$	٤
			$f(x)=x-4$ $g(x)=\sqrt{9-x^2}$ فأوجدي $f(x)=x-4$	٥

انتهت الأسئلة تمنياتي القلبية لكن بالتوفيق والنجاح معلمتكن / المسادة: رياضيات الصف: ثالث ثانوي

الشعبة: اليـــوم:

التاريخ: -٤-٢٤٤١هـ النتية الأما

الفترة: الأولى الزمن: ثلاث ساعات بسم الله الرحمن الرحيم

Ministry of Education

المملكة العربية السعودية وزارة التعليم إدارة التعليم بمنطقة ال مكتب تعليم الثانوية الأولى العام

اختبار الفصل الدراسي الأول (الدور الأول) للعام الدراسي ٤٤٦هـ

٤٠

اسم الط و مع الإحالية و الإحالية المعالية المعال

اسم المدققة	اسم المراجعة	اسم المصححة	The state of the s		11: 11
وتوقيعها	وتوقيعها	وتوقيعها	كتابة	رقما	السؤال –
			خمسة عشر درجة لا غير	10	١٠٠
			خمسة عشر درجة لا غير	10	۲۰۰۰
			خمس درجات فقط لا غير	0	۳س
			خمس درجات فقط لا غير	0	س ٤
			أربعون درجة فقط لا غير	٤٠	المجموع

(ابنتي الحبيبة استعيني بالله وتوكلي عليه فبسم الله)

(5,14) d (-8,16] c [5,16] b [8,10) a $f(6)$ نيمة فإن $f(7) = x^2 + 8x - 24$ نيدا كانت $f(7) = x^2 + 8x - 24$ تكون دالة $f(7) = x^2 + 8x - 24$ تكون دالة $f(7) = x^3 + 2x - 24$ تكون دالة $f(7) = x^4 + 2x - 24$ المدالة $f(7) = x^4 + 2x - 24$ المدالة $f(7) = x^4 + 2x - 24$ المدالة تكون دالة $f(7) = x^4 + 2x - 24$ المدالة $f(7) = x^4 + 2x - 2x - 24$ المدالة $f(7) = x^4 + 2x - 24$ المدالة $f(7) = x^4 + 2$								*	
(5,14) d (-8,16] c [5,16] b [8,10) a $\sqrt{5}$ الدالة $\sqrt{5}$ d d $\sqrt{5}$ d d $\sqrt{5}$ d d d d d d d d d d d d d d d d d d d	لسؤ	إل الأول / اختاري الإجابة الص	سحيا	حة من الخيارات التالية					۱۵ درجة
(5,14) d (-8,16] c [5,16] b [8,10) a و الإنالية المرافق المر	,	باستعمال رمز الفترة يمكن كا	كتابة	$x \leq 16$ المجموعة التالية	<:	8 على الصورة			
	,	[8, 10) a	b	[5, 16]	с	(-8, 16]	d	(5,14)	
	۲	$x^2 + 8x - 24$ إذا كانت	=	قيمة فإن $f(6)$ ه	سي				
$\frac{d}{d}$ فردية $\frac{d}{d}$ فردية $\frac{d}{d}$ فردية $\frac{d}{d}$ فردية $\frac{d}{d}$ فير ذلك $\frac{(y-4)^2}{48} - \frac{(x+5)^2}{36} = 1$ فيمة الاختلاف المركزي للقطع الزائد الذي معادلته $\frac{\sqrt{58}}{7}$ $\frac{d}{7}$ $\frac{\sqrt{84}}{7}$ $\frac{d}{7}$ $\frac{\sqrt{84}}{7}$ $\frac{d}{7}$ $\frac{\sqrt{84}}{7}$ $\frac{d}{7}$ $\frac{d}{7}$ $\frac{\sqrt{84}}{7}$ $\frac{d}{7}$ $\frac{d}{$		90 a	b	40	С	60	d	30	
وربية ولا فردية ولا فردي ولا فردية	۲	$f(x) = x^4 + 2$ الدالة		تكون دالة					
$\frac{\sqrt{58}}{7}$ d $\frac{\sqrt{8}}{74}$ c $\frac{\sqrt{84}}{\sqrt{48}}$ b $\frac{65}{\sqrt{18}}$ a $\frac{\sqrt{58}}{718}$ d $\frac{\sqrt{8}}{74}$ c $\frac{\log_4(x+3) > \log_4(2x+1)}{\log_4(2x+1)}$ $\frac{\log_4(x+3) > \log_4(2x+1)}{\log_4(2x+1)}$ d $\frac{\log_4(x+3) > \log_4(x+3)}{\log_4(x+3)}$ d $\log_4(x+3) > \log_4($,	a فردية	b	ليست زوجية ولا فردية	С	زوجية	d	غير ذلك	
$\frac{\sqrt{58}}{7}$ d $\frac{\sqrt{8}}{74}$ c $\frac{\sqrt{84}}{\sqrt{48}}$ b $\frac{65}{\sqrt{18}}$ a $\frac{\sqrt{58}}{718}$ d $\frac{\sqrt{8}}{74}$ c $\frac{\log_4(x+3) > \log_4(2x+1)}{\log_4(2x+1)}$ $\frac{\log_4(x+3) > \log_4(2x+1)}{\log_4(2x+1)}$ d $\frac{\log_4(x+3) > \log_4(x+3)}{\log_4(x+3)}$ d $\log_4(x+3) > \log_4($		قيمة الاختلاف المركزي للقط	لع الز	$\frac{(5)^2}{(1)^2} = 1$ زائد الذي معادلته	(x+5	$\frac{(y-4)^2}{49}$ —		''	
	٤	65				√8	,	$\sqrt{58}$	
$x>8$ d $x=5$ c $x<2$ b $x\le 9$ a الأعلى $x=5$ c $x<2$ b $x\le 9$ a المادلة $x=5$ c $x<2$ b $x\le 9$ a المادلة $x=5$ c $x<2$ b $x\le 9$ a in the proof of $x=5$ c		$\frac{1}{\sqrt{18}}$ a	b	$\sqrt{48}$	С	$\frac{74}{74}$	d	7	
$x>8$ d $x=5$ c $x<2$ b $x\le 9$ a الأعلى $x=5$ c $x<2$ b $x\le 9$ a المالة تكون $x \le 9$ المالة تكون $x \le 9$ b $x \le 9$ a أبنا الدالة $x \le 9$ b $x \le 9$ c $x \ge 9$ b $x \ge 9$ c $x \ge $	0	$g_4(2x+1)$ حل المتباينة	> lo	$log_4(x+3) >$					
a متزايدة a متزايدة a ثابتة b ثابتة a متناقصة a الدالة a b تمثل إزاحة أربع وحدات إلى a الأسفل a b الأعلى a a الأسفل a a الأعلى a a المادلة a a a a المادلة a		<i>x</i> ≤ 9 a	b	<i>x</i> < 2	c	x = 5	d	<i>x</i> > 8	
الدالة $f(x) = x + 4$ تمثل إزاحة أربع وحدات إلى $f(x) = x + 4$ اليمين a الأسفل a الأعلى a اليسار a العادلة a a العادلة a a العادلة a a العادلة a a المعادلة a	٦	$f(x_1) = f(x_2)$ إذا كانت	f فإ	ن الدالة تكون					
$egin{array}{c c} a & b & b & b & a \\ \hline & b & b & b & a \\ \hline & b & b & b \\ \hline & c & b & b \\ \hline & c & c & b \\ \hline & c & c & c \\ \hline & c & c &$		a متزایدة	b	ثابتة	c	متناقصة	d	غير ذلك	
a الأسفل d الأعلى c اليسار d اليمين a حل المعادلة 2 = 2 علي على العادلة 3 = 2 علي على على المعادلة 3 = 2 على	V	f(x) = x + 4الدالة	تما	ثل إزاحة أربع وحدات إلى	, , ,				
	,	a الأسفل	b	الأعلى	c	اليسار	d	اليمين	
	٨	$2^x = 8^3$ حل المعادلة							
	,	9 a	b	15	c	20	d	10	

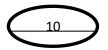
	الصورة اللوغاريتمية 3 =	log ₂ تكافئ الصورة الأسية			W	
	$8 = 2^3$ a	$9 = 3^4$ b	c	$5^2 = 10$	d	$3^2 = 2$
	$2x - 5 \log_2 y$ العبارة	4 <i>lo</i> تكافئ				
١	$log_2 \frac{x^4}{y^5}$ a	$-\log_2(x-y)$ b		$log_2 x^3 y^6$	d	$log_2 x^5 y^8$
,	إذا كانت معادلة القطع تسا	$\lim_{x \to 0} \frac{(x-1)^2}{36} - \frac{(y+5)^2}{9} = 1$	ن مر	کزه هو		
	(1, -5) a	(6,2) b		(1, -6)	d	(3,6)
١,	باستخدام المميز فإن المعادا	$y + y^2 + 4x - 5y - 8$	3 <i>x</i> ;	$4x^{2}$ -		
	a قطع مكافئ	b قطع ناقص	c	قطع زائد	d	دائرة
i sala	تساوي $4^{\frac{1}{2}}=2$		· ·			
١,	$\log_5 3 = \frac{1}{3} \mid a$	$\log_4 2 = \frac{1}{2}$ b	с	$\log_2 7 = 4$	d	$\log_5 3 = 5$
	قيمة 4 log ₁₆ هي	W.577 - 28				"
1	y = 6 a	$y = \frac{1}{2}$ b	с	y = -2	d	<i>y</i> = 3
1	باستعمال الآلة الحاسبة فإ	قيمة log 5				
	3,5540 a	0,6990 b	С	2,4201	d	1,5689

لسؤ	وال الثاني/ ضعي علامة (√) أمام العبارة الصحيحة وعلامة (♥) أمام العبارة الخاطئة	٥١درجة
	مجموعة الأعداد الكلية هي {1,2,3,}	(x)
•	من خصائص الدالة اللوغاريتمية أن مداها مجموعة الأعداد الحقيقة الموجبة فقط	(x)
,	$f(x) = \llbracket x rbracket$ يرمز لدالة القيمة المطلقة بالزمر	(x)
	$\displaystyle \lim_{x o c} f(x) eq f(c)$ تكون الدالة متصلة إذا كان	(x)
	إذا وجدت قيمة عظمى محلية للدالة وكانت أكبر قيمة في مجالها سميت قيمة عظمى مطلقة	(🗸)
	x الدالة المتباينة كل قيمة x ترتبط بقيمة واحدة y ولا توجد قيمة y ترتبط بأكثر من قيمة	(🗸)
	$b^y=x$ صحيحة الدي يجعل المعادلة y الذي يجعل المعادلة	(🗸)
	تكون العبارة دالة إذا لم يقطع أي خط رأسي تمثيلها البياني في أكثر من نقطة	(🗸)
15	لوغاريتم القوة يساوي حاصل ضرب الأس في لوغاريتم أساسها	(🗸)
,	U يأخذ منحنى الدالة التربيعية $f(x)=x^2$ شكل حرف	(🗸)
١	القطوع المخروطية هي الأشكال الناتجة عن تقاطع مستوى ما مع مخروطين دائريين قائمين متقابلين بالرأس	(🗸)

(🗸)	متوسط معدل التغير بين أي نقطتين على منحنى الدالة f هو ميل المستقيم المار بهاتين النقطتين	۱۲
(*)	من خصائص دالة الاضمحلال الأسي أنها متزايدة	17
(*)	إذا كانت $B^2 - 4AC < 0$ يكون القطع قطع زائد	١٤
(x)	$\sin(A+B) = \cos A \cos B - \sin A \sin B$	10

٥ درجات	مود الثاني	ث/ اختاري للعمود الأول ما يناسبه من الع	لسؤال الثالن
$\cot \theta$,	$\sin \theta =$	£
$2 \sin \theta \cos \theta$	*	$\tan\left(\frac{\pi}{2}-\theta\right)=$	۸
$\pm \sqrt{\frac{1 - COS\theta}{1 + COS\theta}}$	۲	cos(A - B) =	٥
$\frac{1}{\csc \theta}$	ŧ	$\tan \frac{\theta}{2} =$	٣
$\cos A \cos B + \sin A \sin B$		$\sin 2\theta =$	۲

٥ درجات		الرابع / اجيبي عن المطلوب	السؤال
-	$cos(90^{\circ} - \theta)$ $= cos 90^{\circ} cos \theta + sin 90^{\circ} sin \theta$ $= 0. cos \theta + 1. sin \theta$ $= sin \theta$	اثبتي صحة المنطابقة المثلثية التالية إذا كان $\cos 90 = 0$, $\sin 90 = 1$ $\cos (90 - \theta) = \sin \theta$,
	$(x-h)^{2} + (y-k)^{2} = r^{2}$ $(x-(-1))^{2} + (y-2)^{2} = 4^{2}$ $(x+1)^{2} + (y-2)^{2} = 16$	اكتبي معادلة الدائرة التي مركزها $(-1,2)$ قطرها 8	Y
(2, x =	5) الاتجاء مفتوح أفقياً الرأس 5 البؤرة $(-1, -5)$ معادلة الدليل $y = -5$ معادلة محور التماثل $y = -5$ طول الوتر البؤري	حددي خصائص القطع المكافئ $(y+5)^2 = -12(x-2)$	۲
	$4^{2n-1} = 64$ $4^{2n-1} = 4^{3}$ $2n - 1 = 3$ $2n = 3 + 1$ $n = 2$	أوجدي قيمة n من المعادلة التالية $4^{2n-1}=64$	٤
$(f \cdot g)$ ($f(x) = f(x) \cdot g(x)$ $= (x - 4) \cdot (\sqrt{9 - x^2})$ $= x\sqrt{9 - x^2} - 4\sqrt{9 - x^2}$	$f(x) = x - 4$ $g(x) = \sqrt{9 - x^2}$ فأوجدي $(f \cdot g)(x)$	٥


انتهت الأسئلة تمنياتي القلبية لكن بالتوفيق والنجاح معلمتكن /

الأربعاء		اليوم:				د بة	 كة العربية السع	المار	
144 / /		ميوم. لتاريخ:	1				وزارة التعليم		
~ 144 / /		عدريع. الزمن:		Dil	وزارة التع وزارة التع	ى: طة ة	الادارة		
		الصفحات:			y of Education		ة العامة للتعليم : ثانوية	<u> </u>	
				ا ش الثانوي	<u> </u> صل الدراسي الأول للصف الثا	ختار الدور الأول الذ			
40	$\overline{}$	حسن)	(اهسوی ا		عين العام الدراسي - 144 هـ للعام الدراسي - 144 هـ	حبيار الموراء ول مد	'		
				• • • • • • • • • • • • • • • • • • • •			الاسم /		
					الشعبة/		الفصل '		
						ي /	رقم الجلوس		
اسم المدقق		اسم المراجع	محح	اسم الم	الدرجة كتابة	ئا	الدرجة رقة		
								السؤال الأول	
								السؤال الثاني	
								السؤال الثالث	
								الدرجة النهائية	
					تعليمات الاختبار:				
				تما الأب	تعليمات الاحتبار: استعمل القلم الأزرق للإجاب				
					استعمل القلم الرصاص في استعمل القلم الرصاص في				
		A lore			عند رمز الفقرة الصحيح (\checkmark)				
		متعدد.							
			٠.٠		استعمل الآلة الحاسبة حس عدم استخدام الط				
					عدم استحدام الط الإجابة بالتفصيل في الأه				
					استخدام أدوات الهندسة في الح	•			
					 الحفاظ على ترتيب ونظافة 				
					 الالتزام بزمن الاختبار انتجابات المناسقات المناسقات				
					مراجعة الإجابات قبل تسليم	•			

السؤال الأول: في الأسئلة من (1) إلى (20) اختار الإجابة الصحيحة: نكتب المجموعة التالية: $\mathbf{x} \leq -\mathbf{3}$ باستعمال رمز الفترة كما يلى: $(-\infty, -3)$ $[-\infty, -3]$ **-3**,∞) أَيُّ العلاقات الآتية يكون فيها y تمثّل دالة في x؟ 2 \cdot (h(a) = $\sqrt{a^2 - 4}$ أيُّ الفترات الآتية تمثل مجال الدالة $(-\infty,2)\cup(-2,\infty)$ $(-\infty, -2] \cup [2, \infty)$ \bigcirc $(-\infty, -4] \cup [4, \infty)$ ما هي الأعداد الصحيحة المتتالية التي تنحصر بينها الأصفار الحقيقية للدالة: $f(x) = 2x^2 - 8x + 5$ في الفترة [1,5]؟ O [4, 5][3, 4] [2, 3] $h(x) = (x + 2)^3 + 4$ الدالة $f(x) = x^3$ ، بحيث نتجت الدالة أجريت على الدالة 5 وحدتين إلى اليمين ها وحدتين إلى اليمين ها وأربع وحدات إلى الأسفل. وحدتين إلى اليسار وحدتين إلى اليسار وأربع وحدات إلى الأعلى. وأربع وحدات إلى الأسفل. منحنى الدالة: $g(x) = \frac{1}{2}[x]$ ، هو لمنحنى الدالة: $g(x) = \frac{1}{2}[x]$. تضييق أفقى. توسع أفقي. تضييق رأسي. $\mathbf{f}(\mathbf{x}) = \frac{3\mathbf{x} - 5}{2}$ أيُّ الدوال الآتية تمثّل الدالة العكسية للدالة 7 $g(x) = \frac{2x-5}{3}$ g(x) = 2x + 5أيُّ الدوال الأسية الآتية عَثّل غوّاً أسيًّا؟ 8 $y = 12 \left(\frac{1}{5}\right)^x$ $y = 10 (3)^x$ 0 $(\frac{1}{2})^{2n-1} \geq (\frac{1}{2})^{n+2}$ ما حلّ المتباينة : $\{n|n \geq -3, n \in R\}$ $\{n|n \leq 3, n \in R\} \| \otimes \| \{n|n \geq 3, n \in R\}$ $\{n|n \leq -3, n \in R\}$ ما هي الصورة الأسّية للمعادلة: log₃ 729 = 6! 10 = **7293**⁶ $= 3729^6$ $=6729^3$ $6^3 = 729$ $^\circ log_5 \ 9 + log_5 \ 27 - log_5 \ 81$ ما الصورة المختصرة للمقدار: 11 $\log_5 243$ $log_5 27$ $\log_5 9$ $\log_5 3$ **(A)** أيِّ مما يلي يعبّر عن log₆ 8 بدلالة اللوغاريتمات العشرية؟ 12 log 6 log 8 $log \frac{8}{6}$ log 48 **(A)** log8 log 6 أيُّ عبارة مما يأتي تكافئ العبارة sin θ csc θ؟ 13 sin² θ -1 tan 0 **(A)** $\frac{\cos\theta \csc\theta}{\tan\theta}$ أيٌّ عبارة ثما يأتي تكافئ العبارة 14 $\cot^2 \theta$ tan 0 $tan^2 \theta$ **(A)** $\frac{\tan^2\theta+1}{\tan^2\theta}$ أيٍّ عبارة ثما يأتي تكافئ العبارة **15** $\cos^2 \theta$ $\tan^2 \theta$ $csc^2 \theta$ $\sin^2 \theta$.90° $< \theta <$ 180° ، $\tan \theta =$ $- 2\sqrt{2}$ وذا كانت: $\tan 2\theta$ ، أذا كانت: $\tan 2\theta$ ماهي القيمة الدقيقة لـ 16 $-2\sqrt{2}$ 2

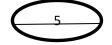
هو المحل الهندسي لمجموعة نقاط المستوى التي يكون بُعد كل منها عن نقطة ثابتة تُسمّى البؤرة مساويًا دائمًا لبعدها عن مستقيم معلوم يُسمّى:									
القطع الزائد.	0	الدائرة.	0	القطع الناقص.	®	القطع المكافئ.	(A)		
ما معادلة الدائرة التي مركزها (2 , 1 –)، وقطرها 6؟									
$+(y+2)^2 (x-1)^2$ = 9	0	$+(y-2)^2 (x+1)^2$ = 9	0	$+(y+2)^2 (x-1)^2$ = 36	®	$+(y-2)^2 (x+1)^2$ = 36	(A)		
		$\frac{(x+8)}{64}$	B) ² _	$\frac{(y-4)^2}{80} = 1$ د الذي معادلته:	ع الزائـ	ما قيمة الاختلاف المركزي للقطِ	19		
$\frac{1}{2}$	0	$\frac{3}{4}$	0	$\frac{3}{2}$	B	$\frac{2}{3}$	(A)		
	ما نوع القطع المخروطي الذي تمثِّله المعادلة التالية: 3x² - 6x + 4y - 5y² + 2xy - 4 = 0؟								
قطع زائد.	0	دائرة.	0	قطع ناقص.	B	قطع مكافئ.	(

السؤال الثاني:

أولًا: أكمل الجمل الآتية مستعمل المفرد المناسب من المستطيل أدناه:

E-دالة القيمة المطلقة.	D عامل النمو	C - الدوال الفردية.	B- الدوال الزوجية.	A-عامل الاضمحلال
M – المحور الأكبر.	L –المحور المرافق.	K متطابقات المقلوب.	Gالدالة التربيعية.	F المتطابقات النسبية.

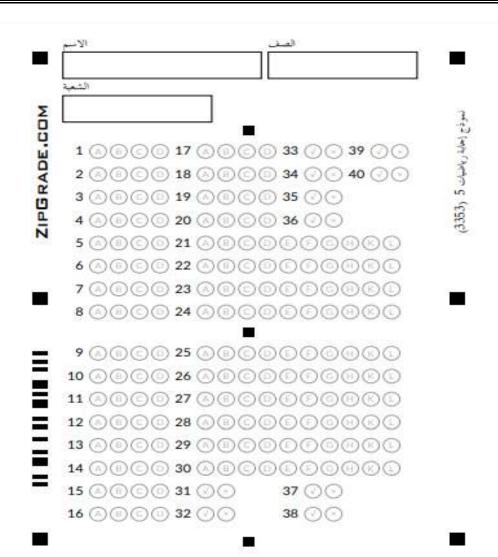
	. y	المحور	حول	لمتماثلة	الدوال ا	تُسمى	(1	
--	------------	--------	-----	----------	----------	-------	-----------	--


$$(5)$$
 أساس العبارة الأسّية $(A(t) = a (1 + r)^t$ ، يُسمّى

$$oldsymbol{a}$$
 أساس العبارة الأسّية $oldsymbol{A(t)} = a \ (1-r)^t$ ، يُسمّى (6) أساس العبارة الأسّية $oldsymbol{A(t)} = a \ (1-r)^t$

$$\cot \theta = \frac{1}{\tan \theta}$$
 , $\tan \theta = \frac{1}{\tan \theta}$) المعادلة: \neq (7) المعادلة:

$$\cot \theta = \frac{1}{\tan \theta}$$
 , $\tan \theta$ $\cot \theta = \frac{1}{\tan \theta}$, $\tan \theta$ (7) المعادلة: $\cot \theta = \frac{1}{\tan \theta}$, $\cot \theta = \frac{\sin \theta}{\cos \theta}$, $\cos \theta$ (8) المعادلة: $\cot \theta = \frac{1}{\cos \theta}$, $\cot \theta = \frac{1}{\cos \theta}$, $\cot \theta = \frac{1}{\cos \theta}$


10) القطعة المستقيمة التي طولها 2b، وتُعامد المحور القاطع في مركز القطع الزائد تُسمى

ثانيًا: ضع علامة (\checkmark) أمام العبارة الصحيحة، وعلامة (lpha) أمام العبارة الخاطئة

قيمة $f(4)$ للدالة $f(x) = \begin{cases} 3\sqrt{4x} , x \leq 4 \\ 2x^2 , x > 4 \end{cases}$ تساوي: 48.	1
التمثيل البياني للمعادلة التالية: $\mathbf{y} = -\mathbf{x}^2 + 6$ ، متماثل حول نقطة الأصل.	2
متوسط معدل التغير للدالة التالية: $\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 - 2\mathbf{x}^2 - 3\mathbf{x} + 2$ ، في الفترة [2,3] يساوي 2.	3
مجال الدالة الرئيسة (الأم) لدوال النمو الأسّي هو مجموعة الأعداد الحقيقية (R).	4
تُسمى لوغاريتمات الأساس 10 اللوغاريتمات العشرية، وتُكتب دون كتابة الأساس 10.	5
تبسيط العبارة التي تحتوي على دوالّ مثلثية، يعني أن نكتبها في صورة قيمة عددية، أو بدلالة دالة مثلثية واحدة إن أمكن.	6
يمكن إثبات صحة المتطابقات المثلثية بتحويل أحد طرفَيها فقط، بحيث يصبح الطرفان متساويين.	7
بؤرتي القطع الناقص تقعان دائمًا على المحور الأكبر دائمًا.	8
a , b , c هي: a , b , c هي القطع الناقص العلاقة بين a , b , c هي القطع الناقص العلاقة بين	9

	10 طول المحور القاطع للقطع الزائد الذي معادلته: $1 = \frac{(x+1)^2}{81} - \frac{(y+4)^2}{64}$ يساوي 18.
5	السؤال الثالث:
	اقرا كل سؤال بعناية، ثم حل:. $f(6)$ فأوجد قيمة الدالة عند $f(x)=x^2+8x-24$:- (1
	2) اكتب بدلالة اللوغاريتم العشري 7 log ₃ 7
1.5	$\frac{\sin^2\theta}{1-\cos\theta} = 1 + \cos\theta$ أثبت صحة المتطابقة (3
1.5	4) حدد نوع القطع الذي تمثله المعادلة الأتية؟ $+4x^2-3xy+4x-5y-8=0y^2$
إعداد / عبدالججيد العويمري	انتهت الأسئلة.
	4

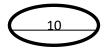
الأربعاء	اليوم:
/ 144 ھ	التاريخ:
	الزمن:
	عدد الصفحات:

المملكة العربية السعودية
وزارة التعليم
الإدارة العامة للتعليم بمنطقة
ثانوية

اختبار الدور الأول للفصل الدراسي الأول للصف الثالث الثانوي (المستوى الخامس) للعام الدراسي 144 هـ.

الأسم /

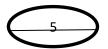
السوال الثالث الدرجة النهائية


تعليمات الاختبار:

- استعمل القلم الأزرق للإجابة على الأسئلة.
- استعمل القلم الرصاص في التمثيل البياني.
- ضع علامة $(\sqrt{})$ عند رمز الفقرة الصحيحة في أسئلة الاختيار من متعدد.
 - استعمل الآلة الحاسبة حسب التعليمات.
 - عدم استخدام الطامس.
 - الإجابة بالتفصيل في الأسئلة المقالية.
 - استخدام أدوات الهندسة في الحل حسب الحاجة.
 - الحفاظ على ترتيب ونظافة ورقة الإجابة.
 - الالتزام بزمن الاختبار المحدد أعلاه.
 - مراجعة الإجابات قبل تسليم الورقة للملاحظ.

السؤال الأول: في الأسئلة من (1) إلى (20) اختار الإجابة الصحيحة: نكتب المجموعة التالية: $\mathbf{x} \leq -\mathbf{3}$ باستعمال رمز الفترة كما يلى: -3,∞) $(-3,\infty)$ أيُّ العلاقات الآتية يكون فيها y تمثّل دالة في x؟ 2 \cdot (h(a) = $\sqrt{a^2 - 4}$ أيُّ الفترات الآتية تمثل مجال الدالة $(-\infty,2)\cup(-2,\infty)$ $(-\infty, -2] \cup [2, \infty)$ ® ما هي الأعداد الصحيحة المتتالية التي تنحصر بينها الأصفار الحقيقية للدالة: $f(x) = 2x^2 - 8x + 5$ في الفترة [1,5]؟ [4, 5][3,4] 0 [2, 3] $h(x) = (x+2)^3 + 4$ الانسحابات التي أُجريت على الدالة $f(x) = x^3$ ، بحيث نتجت الدالة بالتي أُجريت على الدالة 5 وحدتين إلى اليمين وحدتين إلى اليسار وحدتين إلى اليسار وحدتين إلى اليمين وأربع وحدات إلى الأسفل. وأربع وحدات إلى الأعلى. وأربع وحدات إلى الأعلى. وأربع وحدات إلى الأسفل. تضييق أفقى. تضييق رأسي. توسع أفقي. توسع رأسي. $\mathbf{f}(\mathbf{x}) = \frac{3\mathbf{x} - 5}{2}$ أيُّ الدوال الآتية تمثّل الدالة العكسية للدالة 7 $g(x) = \frac{3x+5}{3}$ $g(x) = \frac{2x - 5}{3}$ $g(x) = \frac{2x+5}{2}$ g(x) = 2x + 5أيُّ الدوال الأسّية الآتية عَثّل غوّاً أسيًّا؟ 8 $y = 12 \left(\frac{1}{5}\right)^{x}$ $y = 10 (3)^x$ **(A)** $(\frac{1}{2})^{2n-1} \geq (\frac{1}{2})^{n+2}$ ما حلّ المتباينة : $\{n|n \leq 3, n \in R\} \mid \emptyset \mid \{n|n \geq 3, n \in R\}$ $\{n|n \leq -3, n \in R\}$ $\{n|n \geq -3, n \in R\}$ ما هي الصورة الأسّية للمعادلة: $6 = \frac{729}{100}$ 10 = **729**3⁶ ® $= 3729^6$ $=6729^3$ $6^3 = 729$ $^\circ \log_5 9 + \log_5 27 - \log_5 81$ ما الصورة المختصرة للمقدار: 11 $\log_5 243$ $log_5 27$ $\log_5 3$ $\log_5 9$ **(A)** أيٌّ ثما يلي يعبّر عن log₆ 8 بدلالة اللوغاريتمات العشرية؟ 12 log 6 log 8 $log \frac{8}{6}$ log 48 **(A)** log8 log 6 أيُّ عبارة مما يأتي تكافئ العبارة sin θ csc θ؟ 13 $\sin^2 \theta$ -1 tan 0 **(A)** $\frac{\cos\theta}{\tan\theta}$ عبارة مما يأتي تكافئ العبارة $\frac{\cos\theta}{\tan\theta}$ 14 $\cot^2 \theta$ tan 0 $tan^2 \theta$ **(A)** $\frac{\tan^2\theta + 1}{\tan^2\theta}$ أيِّ عبارة ثما يأتي تكافئ العبارة **15** $\cos^2 \theta$ $\tan^2 \theta$ $\sin^2 \theta$.90° $< heta < 180^\circ$ ، $tan \, heta = - 2 \, \sqrt{2}$. وذا كانت: $tan \, 2 heta$ 16

هو المحل الهندسي لمجموعة نقاط المستوى التي يكون بُعد كل منها عن نقطة ثابتة تُسمّى البؤرة مساويًا دائمًا لبعدها عن مستقيم معلوم يُسمّى:							17	
القطع الزائد.	0	الدائرة.	0	القطع الناقص.	B	القطع المكافئ.	(A)	
	ما معادلة الدائرة التي مركزها (2 , 1 –)، وقطرها 6؟							
$+(y+2)^2 (x-1)^2$ = 9	0	$+(y-2)^2 = 9(x+1)^2$	0	$+(y+2)^2 (x-1)^2$ = 36	®	$+(y-2)^2 (x+1)^2$ = 36	(A)	
		$\frac{(x+8)}{64}$	B) ² _	$\frac{(y-4)^2}{80} = 1$ د الذي معادلته:	ع الزائ	ما قيمة الاختلاف المركزي للقط	19	
$\frac{1}{2}$	0	$\frac{3}{4}$	0	$\frac{3}{2}$	₿	$\frac{2}{3}$	(A)	
ما نوع القطع المخروطي الذي تُمتِّله المعادلة التالية: $3x^2 - 6x + 4y - 5y^2 + 2xy - 4 = 0$							20	
قطع زائد.	0	دائرة.	0	قطع ناقص.	®	قطع مكافئ.	(A)	


السؤال الثاني:

أولًا: أكمل الجمل الآتية مستعمل المفرد المناسب من المستطيل أدناه:

E–دالة القيمة المطلقة.	D عامل النمو	C - الدوال الفردية.	B- الدوال الزوجية.	A-عامل الاضمحلال
M – المحور الأكبر.	L –المحور المرافق.	K – متطابقات المقلوب.	Gالدالة التربيعية.	F المتطابقات النسبية.

y الدوال الزوجية y	حول المحور ا	الدوال المتماثلة	1) تُسمى
--------------------	--------------	------------------	------------------

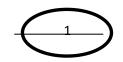
6) أساس العبارة الأسّية 'A(t) = a
$$(1- r)^t$$
 يُسمّى \dots أساس العبارة الأسّية 'A(t) = a $(1- r)^t$

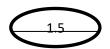
ثانيًا: ضع علامة (\checkmark) أمام العبارة الصحيحة، وعلامة (※) أمام العبارة الخاطئة

×	قيمة $f(4)$ للدالة $f(x)=egin{cases} 3\sqrt{4x},x&\leq 4 \ 2x^2,x>4 \end{cases}$ تساوي: 48.	1
×	التمثيل البياني للمعادلة التالية: $\mathbf{y} = -\mathbf{x}^2 + 6$ ، متماثل حول نقطة الأصل.	2
×	متوسط معدل التغير للدالة التالية: $f(x) = x^3 - 2x^2 - 3x + 2$ يساوي 2.	3
$\sqrt{}$	مجال الدالة الرئيسة (الأم) لدوال النمو الأسّي هو مجموعة الأعداد الحقيقية (R).	4
V	تُسمى لوغاريتمات الأساس 10 اللوغاريتمات العشرية، وتُكتب دون كتابة الأساس 10.	5
$\sqrt{}$	تبسيط العبارة التي تحتوي على دوالّ مثلثية، يعني أن نكتبها في صورة قيمة عددية، أو بدلالة دالة مثلثية واحدة إن أمكن.	6
V	يمكن إثبات صحة المتطابقات المثلثية بتحويل أحد طرفَيها فقط، بحيث يصبح الطرفان متساويين.	7
V	بؤرتيَ القطع الناقص تقعان دائمًا على المحور الأكبر دائمًا.	8
√	. = $a^2-b^2c^2$ هي: a , b , c هي: في القطع الناقص العلاقة بين	9

طول المحور القاطع للقطع الزائد الذي معادلته: $1 = \frac{(x+1)^2}{81} - \frac{(y+4)^2}{64}$ يساوي 18.

(5)
		フ

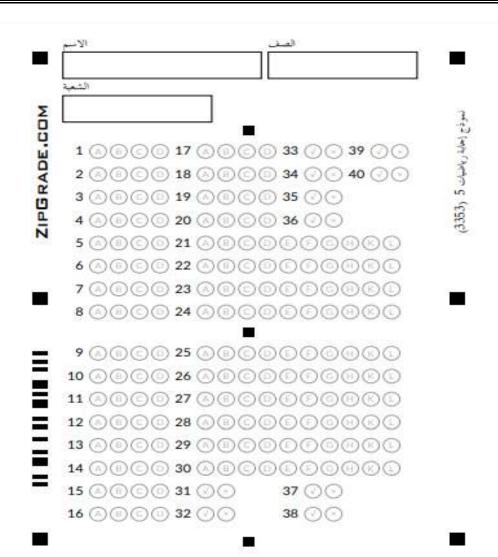

السؤال الثالث:


10

اقراكل سؤال بعناية، ثم حل:.

-:
$$f(6)$$
 غاد قيمة الدالة عند $f(x) = x^2 + 8x - 24$ فاوجد قيمة الدالة عند (1

.....


$$\frac{\sin^2\theta}{1-\cos\theta} = 1 + \cos\theta$$
 أثبت صحة المتطابقة (3

 $+4x^2 - 3xy + 4x - 5y - 8 = 0y^2$

إعداد / عبدالجيد العويمري

	المادة:
	المستوى:
	الصف:
	الزمن:
- ≥1446	السنة الدراسية:

المملكة العربية السعودية وزارة التعليم إدارة التعليم بمحافظة مدرسة

رقم الجلوس				اسم الطالبة		
السؤال الثالث المجموع		السؤال الثالث	السؤال الثاني	السوال الأول	رقم السؤال	
						الدرجة

أجيبي مستعينة بالله على الأسئلة التالية

السؤال الأول: ظللى الإجابة الصحيحة في ورقة الإجابة:

		ورقة الإجابة:	تيکه کي ا	السنوان الأون: طلني الإجابة الصد				
	. تكتب المجموعة 44 £ x > 11-على صورة فترة							
(-31 · 64)	С	[-31 · 64]	В	(-31 · 64]	Α			
		J	= f(x) =	قطع y في الدالة 4+x2-6x	2. الم			
0	С	-6	В	4	Α			
				ع الدالة f(x) =x2+6x+10	3. نو			
فردية	С	لا زوجية ولا فردية	В	زوجية	Α			
				ى الدالة خطأ! = f(x) هو	4. مد			
R-{1}	С	R-{0}	В	R	Α			
			هي	$f(x)=\sqrt{x+8}$ الة العكسية للدالة.	5. الد			
f-1(x)= x2-8	С	f-1(x)= x2+8	В	f-1(x)= x-8	Α			
		ن =(f-g)(x)	=(f(x فإر	x2+5x+6 ، g(x)=x+2 کانت	6. إذا			
x2+4x+4	С	x2+4x+6	В	x2+x+2	Α			
				جال الدالة f(x)=2x+1+3 هو	∽ .7			
R-{3}	С	R-{-1}	В	R	Α			
				Log327=	.8			
27	С	9	В	3	Α			
				Log100.01=	.9			
1-	С	2-	В	10	Α			
				نيمة =4Log22	.10			
8	С	4	В	2	Α			
		=3-6 هي	سية خطأ!	الصورة اللوغاريتمية للمعادلة الأس	11. 1			
3-= خطأ! Log6	С	Log6-3=216	В	Log6216=-3	Α			
	_							

12. في الشكل المقابل الدالة متماثلة حول

ш	19	
-	0	×

محور X	С	نقطة الأصل	В	محور γ	Α		
13. الصورة الأسية للمعادلة اللوغاريتمية 4=Log5625 هي							
55=625	С	45=625	В	54=625	Α		

14. حل المعادلة خطأ! =Logx32 هي							
X=8	C	X=2	В	X=4	Α		
15. العبارة المختلفة عن العبارة Logb24 هي							
Logb3+Logb8	С	Logb4+Logb20	В	Logb4+Logb6	Α		

$f(x) = \sqrt{x-1}$				ل المقابل أصفار الدالة	الشك
ō1 S			1		.16
1-	С	1	В	0	Α
)f هو	لأمf(x)=3x-2+4 لتصبح 4+2-3x	أصلية ا	التحويل الذي يحدث على الدالة الأ	.17
انسحاب وحدتين إلى اليمين	С	انسحاب وحدتين إلى اليسار	В	انسحاب وحدتين إلى اليمين	Α
و 4وحدات على الأعلى		و 4وحدات على الأعلى		و 4وحدات إلى الأسفل	
		$(f_o g)(2) =$	f فإن	إذا كان x)=2+x3 ⋅ g(x) =x2 إذا	.18
66	С	64	В	4	Α
		نو	> f(x)=	مجال الدالة اللو غاريتمية Logbx=	.19
[0 · ∞)	С	R	В	(0 ⋅∞)	Α
			f(-5)=	إذا كانت f(x)=-4x+3 فإن	.20
23-	С	6-	В	23	Α

		السؤال الثاني: ظللي حرف (ص) إذا كانت الإجابة صحيحة، وحرف (خ) إذا كانت العبارة خاطئة:
خطأ	صىح	السؤ ال
خ	ص	1. إذا كانت خطأ! =(x)غانِ مجال (R-{4}هو R-{4}
خ	ص	2. الدالة العكسية للدالة f(x)=4x+9 هي f-1(x)=4x-9
خ	ص	3. الدالة خطأ! =(x) متصلة عند x=0
خ	ص	4. منحنى الدالة الأسية f(x)=bx يمر دائمًا بالنقطة (1 ، 0)
خ	ص	5. 3x+2y=21 علاقة تمثل دالمة
خ	ص	 6. تكون الدالة f متزايدة على فترة ما إذا وفقط إذا زادت قيمة (x)كلما زادت قيمة x في الفترة
خ	ص	7. منحنى الدالة اللوغاريتمية f(x)=Logbx يمر دائماً بالنقطة (0 ، 1
خ	ص	8. مجال الدالة خطأ! =(R-{7,0} هو R-{7,0}
خ	ص	9. الدالة h(x)=x3-5 هو انسحاب للدالة f(x)=x3 للأسفل 5 وحدات
خ	ص	10. إذا وجدت قيمة عظمى محلية للدالة وكانت أكبر قيمة في مجالها سميت قيمة عظمى مطلقة

المطلوب	حسب	أوجد	الثالث:	السىؤال
---------	-----	------	---------	---------

[0	ر 3 ا	الفنرة	:(t(x) على	=x3-x	للداله	النغير	معدل	منوسط	اوجد	(/
-----	-------	--------	------------	-------	--------	--------	------	-------	------	---	---

الحل

B) حل المعادلة الأسية Log448-Log4n=Log46
الحل
C) استعمل Log42=0.5 في إيجاد قيمة Log432
الحل
D) اكتب العبارة Log320 بدلالة اللوغاريتم العشري ثم أوجد قيمتها
الحل
E) الدالة f(x)=x3 اسمهامجالهامداها
متماثلة حول

انتهت الأسئلة وفقك الله وسدد على درب الخير خطاك معلمتك:

بسم الله الرحمن الرحيم

المملكة العربية السعودية

وزارة التعليم

إدارة التعليم ...

الثانوية ...

٣ المسار العام	المادة: رياضيات	اختبار الفصل الأول الدور الأول للعام الدراسي ٥٤٥-١٤٤٦هـ
الزمن : ساعتان .	اليوم: الأحد	اسم الطالب/:ـة:
عددالأسئلة:٣	عددالصفحات: ٤	رقم الجلوس

المدقق /ة	المراجع/ ة	المصحح/ ة	كتابة	رقما	الدرجة
					السؤال الأول
					السؤال الثاني
					السؤال الثالث
					المجموع

(ملاحظات هامة للاختبار)

١/ حل جميع الفقرات وعدم ترك أي سؤال دون حل.

٢/ يسمح باستخدام الآلة الحاسبة.

٣/ عدم استخدام الليكود (المصحح).

٤/ كتابة رقم الهوية بصورة صحيحة في كرت الإجابة.

	<u> ا</u> ل الأول:	السؤ
٣٠	, الحرف الدال على الإجابة في بطاقة الإجابة .	ظللي
	تمثل باستخدام فترة على الصورة $-2 \leq x < 5$	1
	[-2,5] 2 $(-2,5)$ 3 $(-2,5)$ 3 $(-2,5)$ 3	
	(شكل ١) القيمة الصغرى المحلية للدالة هي	۲
شکل ۱	-3 2 3 E 1 4 -1 j	
19 1	(شكل ١) تتناقص الدالة في الفترة	٣
	$ $ $(-1,1)$ $ $ $(-\infty,\infty)$ $ $ $ $ $(-\infty,\infty)$	ź
O x	∞ 2 1 2 2 2 2 2 2 2	•
	(شكل ١)أصفار الدالة هي	٥
$f(x) = x^3 - 4x$	-2,2 ² -2,0,2 중 -2,0 수 2,0 ¹	
	أي من العبارات الاتية صحيحة دائما	٦
	أ الدالة لا تمثل ب كل علاقة تمثل ج كل دالة تمثل د العلاقة لا تمثل علاقة . العلاقة لا تمثل علاقة . دالة .	
	مجال الدالة $g(x) = \sqrt{t-3}$ هو	٧
شکل ۲	_	
A 4 y A	في شكل ٢ عند استخدام اختبار التماثل على المنحنى نحكم عليه أنه	٨
	أ متماثل حول محور ب متماثل حول نقطة ج متماثل حول د غير متماثل	
	x . الأصل . محور y	
	$f(x) = \sqrt{x^2 - 6} - 6$ الفترة التي يقع فيها صفر الدالة التي الفترة التي يقع فيها صفر الدالة التي الدالة التي يقع فيها صفر الدالة التي الدالة التي الدالة التي الدالة التي الدالة التي الدالة التي التي التي التي التي التي التي التي	٩
h(x) = f(x)	اً [6,7] ب [7,8] ج [8,9] د [6,7] ا اذا كانت $g(x) = 2x^2 + 3x - 5$ تساوي	١.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	متوسط معدل التغير للدالة $g(x)=x^2$ على الفترة $g(x)=x^2$ تساوي	11
شکل ۳		
g(x) = x + 4	مدی الدالة $f(x) = \sqrt{x}$ هو	١٢
	$(-\infty,0]$ $\stackrel{1}{\smile}$ $[0,\infty)$ $\stackrel{1}{\smile}$ Q $\stackrel{1}{\smile}$ R $\stackrel{1}{\smile}$	A 244
	(شكل ٣) التحويل الهندسي الظاهر هو	١٣
	أ انسحاب أفقي ب انسحاب رأسي ج تمدد رأسي د تمدد أفقي	
f(x) = x	$g(x)=x^2+3$ الدالة الرئيسة الأم للدالة $g(x)=x^2+3$ الدالة الرئيسة الأم الدالة الرئيسة الأم الدالة الدال	١٤
	اً الثابتة ب المحايدة ج التربيعية د التكعيبية $f(x) = x^2 + x$, $g(x) = 9x$ هو حاصل جمع الدالتين $f(x) = x^2 + x$, $g(x) = 9x$	10
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·
		١٦
	اذا كانت $f(x) = \sqrt{x+1}$, $g(x) = 4x$ أبان $f(x) = \sqrt{x+1}$ بنداري	' '
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	١٧
	$= g(x) \text{ as } f(x) = \frac{1}{2}$ $2x - 5 2x + 5 3x + 5 2x + 5 5$	
	$\frac{2x+3}{3}$ $\frac{2x+3}{2}$ $\frac{2x+3}{2}$ $\frac{2x+3}{3}$	
	$f(x) = x^4 + x^2$	١٨
	أ زوجية ب فردية ج ليست زوجية د غير متماثلة ولا فردية	

يتبع

					y = 4 هو	x _	طع الدالة الأسية 1	۱ مقد	۱۹
	3	د	2	٦	1	Ļ	0	Í	
					تساوي χ	: هو	$2^x=8^3$ المعادلة $2^x=8$	۱ حل	۲.
	6	7	7	•	8	ب	9	١	
شکل ٤					2 هو	x+2	$\frac{1}{2}$ على المتباينة	` '	۲۱
$f(x) \qquad f(x) = \log_b x$	$x \ge -7$	د	$x \ge -3$	ج	$x \ge 3$	ب	$x \ge 7$	١	
				l.	f(x) = 1	\log_b	$x = \frac{1}{x}$ كل ٤) مجال الدالة R	۱ (ش	۲۲
(1, 0) (b, 1)	(-∞,0]	7	[0,∞)	<u>ق</u>					
$(\frac{1}{b}, -1)$							لكل ٤) يوصف منحن	1	۲۳
	غیر متصل وغیر متباین.	٦	غیر متصل ومتباین.	3	متصل و غیر متباین.	Ļ	متصل ومتباين.	1	
		I				ي	لة log ₃ 81 تساو	۱ قیه	۲ ٤
	7	7	6	ج	5	ب	4	Í	
						وي	تسا $\log_{10}(-10$) (0	۲٥
	غير معرف	7	-10	÷	10	Ļ	1	j	
	ري	تساو	ية 49 log ₃	لتقريب	فان القيمة اا \log_3	7 ≈	كانت 1.7712	اذا اذا	47
	5.3136	1	4.7712	4	3.5424	Ļ	3.7712	١	
					هو $\log_2(x^2 -$	4) =	$\log_2 3x$ المعادلة	۱ حل	۲٧
	4	د				ļ	-2	١	
				رة الا		8 =	سورة اللوغاريتمية 3	١ الص	۲۸
	$2^3 = 8$	7	$3^2 = 8$	4	$8^2 = 64$	Ļ		Í	
					ام عشرية	2 ارق	لة log 7 لاقرب إ	۱ قیه	4 9
	1.0686	د	0.7521	÷	0.8400	Ļ	0.8451	١	
						lo	$g_2 x > 4$ المتباينة	۲ حل	۳.
	<i>x</i> > 10	د	<i>x</i> > 12	ج	<i>x</i> > 14	ب	<i>x</i> > 16	Í	

السؤال الثاني:

0

ظللي علامة صح أمام الإجابة الصحيحة وعلامة خطأ أمام الإجابة الخاطئة في بطاقة الإجابة.

خطأ	صح	العبارة	م
		الدالة الفردية متماثلة حول نقطة الأصل .	١
		انسحاب المنحنى هو عبارة عن صورة مرآه للمنحنى الأصلي حول مستقيم.	۲
		الدالة $y=rac{1}{2}^x$ تسمى دالة نمو أسي.	٣
		الدالة الأسية تمر بالنقطة $(1,0)$.	٤
		. التحويل الهندسي الظاهر في الدالة $f(x)=2$ x^3 هو تمدد تكبير	0
		اللوغاريتمات $1 \log x$ تسمى اللوغاريتمات العشرية .	7
		. $\log_2 24 = \log_2 20 + \log_2 4$ بالصيغة $\log_2 4 + \log_2 20$	٧
		من خواص اللوغاريتمات $\log_3 \frac{6}{5} = \log_3 6 - \log_3 5$.	٨
		المقطع $y = \log_3(x+1) + 3$ هو $y = \log_3(x+1)$ المقطع	פי
		من الخصائص 1 = log 10.	١.

	السوال الثالث: (مقالي)
٥	. $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$ علما بأن $x = 1$ علما بأن $f(x) = \frac{x^2 - 1}{x - 1}$ علما بأن أعيدي تعريف الدالة
8 9	ب) أكملي العبارات فيما يلي بما يناسبهما
-8 \4 O 4 8x	١) الدالة في الرسم ليس لها دالة عكسية لأنها
4	f(x) = [x] هو المجموعة $f(x) = [x]$
-8	٢) الدالة العكسية للدالة اللو غاريتمية هي الدالة
	انتهت الأسئلة
تمنياتي لكم بالتوفيق والنجاح	

	ادة :	اسم الم
		الصف
		اليوم :
/ 1446هـ		
		الزمن:

التوقيع

أسئلة اختبار مادة الرياضيات الفصل الدراسي (الأول) الدور (الأول) للعام الدراسي 1446هـ

أو لاً: بيانات الطالب (ة)
الشعبة
الشعبة
ثانياً: در جات الاختبالسؤال السؤال الدرجة رقماً الدرجة كتابة الدرجة كتابة

لكل فقره درجة واحدة

الأسئلة القسم الأول: الأسئلة الموضوعية

السؤال الأول: اختر الإجابة الصحيحة من بين البدائل أدناه بوضع دائرة على رمز البديل الصحيح.

			پ	f(x)=2	$x^2 + 18x$	لدالة 14 –	f(9)قيمة
230	(7)	310	(<u>5</u>)	250	(ب)	119	(أ)

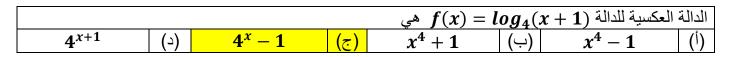
					$y = 4^x - 1$ ۽	للدالة الأسب $oldsymbol{y}$	ما المقطع
0	(7)	1	(ج)	2	(ب)	3	(أ)

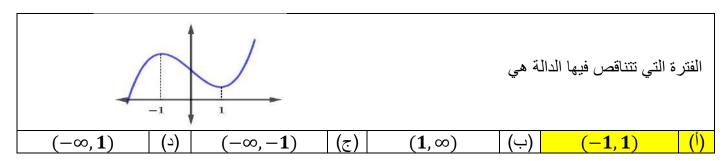
			الفترة	برمز $-4 \leq x$	جموعة 1 >	يلي يعبر عن الم	أي مما
[-4,1]	(7)	[-4, 1)	(ج)	(-4, 1]	(ب)	(-4, 1)	(أ)

$$f(x)=rac{\sqrt{2x-3}}{x-5}$$
 أي مما يلي يمثل مجال الدالة

$$x \neq \frac{3}{2} \qquad (2) \qquad x \geq \frac{3}{2}, x \neq 5 \qquad (5) \qquad x \neq 5 \qquad (4) \qquad x \geq 0 \qquad (5)$$

		(<i>g</i> °	$\overline{f}(x)$	وان ($oldsymbol{g}(x) = x -$	و 4	$f(x) = x^2 + 1$	اذا كانت
$x^2 + 5$	(7)	$x^2 - 5$	(ج)	$x^2 - 3$	(ب)	x + 5	(أ)




يتبع

اسم المادة :
الصف:
القسم:
اليوم:
التَّارَيخ: / /1446هـ
الزمن:

$$oldsymbol{g}(x) = rac{1}{x-1} + 2$$
 الدالة الرئيسية الأم للدالة

$$f(x) = x^3 \qquad (2) \qquad f(x) = |x| \qquad (3) \qquad f(x) = \frac{1}{x} \qquad (4) \qquad f(x) = \sqrt{x} \qquad (5)$$

ما الصورة اللوغاريتمية للمعادلة
$$5^3=125$$
 ما الصورة اللوغاريتمية للمعادلة $3log5=125$ (ع) $log_53=125$ (خ) $log_3125=5$ (ب) $log_5125=3$ (أ)

$$f(x)=rac{1}{x}$$
 (ع) $f(x)=x^3$ (ج) $f(x)=x^2+x$ (ب) $f(x)=x^2+|x|$ (أ)

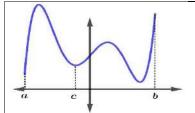
] يساوي	2, 7] 8	علي الفترة $f(x) = $	\sqrt{x} +	سط معدل التغير للدالة 2	متوه
$\frac{2}{7}$	(7)	1 -	(ج)	$\frac{7}{2}$	(ب)	5	(1)

				1 -	$+2log_2(x)$	لة 5 = (1 +	حل المعاد
2	(7)	3	(ج)	-3	(ب)	4	(1)

						فإن $3^x \geq 9$	اذا كانت
x < 2	(7)	x > 2	(5)	<i>x</i> ≤ 9	(ب)	$x \ge 2$	(1)

					f(x)	=2x-8 الدالة	ما صفر
4	(7)	-4	(5)	8	(ب)	-8	(أ)

يتبع



اسم المادة :	
الصف:	
القسم:	
اليوم :	القالت التعليم Ministry of Education
الزمن:	

المملكة العربية السعودية وزارة التعليم الإدارة العامة للتعليم بمنطقة جازان مكتب التعليم ب... اسم المدرسة : الرقمُ الوزاري :

x=c فعند ، [a,b] في الفترة الدالة f(x) الشكل يمثل منحنى الدالة فيكون للدالة قيمة .

صغري مطلقة عظمى مطلقة عظمي محلية (أ) (7)

 $log \frac{}{2x}$

(7) $log_5 x^2 (3x - 5)$ (ج)

 $2log_5x - log_5(2x - 5)$ $log_5 \frac{1}{2x-5}$

(أ)

 $7^{x-1}+7=8$ ما قيمة x التي تحقق 0 (۲) (ج) -1

منحنى الدالة اللوغاريتمية $f(x) = log_h x$ في النقطة (0, 1)(0,0)

 $log_3x = 0$ حل المعادلة 3 0 2

مدي الدالة الأسية $\displaystyle f(x) = \left(rac{1}{2}
ight)^x$ يساوي R^+ W (7) R (7)

▶ ② ② ③ MOE_JZN

اسم المادة :
الصف:
القسم:
اليوم:
التَّارَيخ: / /1446هـ
الزمن:

المملكة العربية السعودية وزارة التعليم الإدارة العامة للتعليم بمنطقة جازان مكتب التعليم ب... اسم المدرسة : الرقم الوزاري:

السؤال الثاني أولا

لكل فقره درجة واحدة

ضع علامة (\checkmark) أمام العبارة الصحيحة، وعلامة (\ast) أمام العبارة الخاطئة فيما يلي:

الإجابة	العبارة	م
*	$oldsymbol{y} = \left(rac{1}{b} ight)^x$ هو $oldsymbol{y} = oldsymbol{b}^x$ معكوس الدالة	1
✓	مدي الدالة هو مجموعة قيم المخرجات الممكنة	2
✓	$f(x)=2x^2+5x+3$ المقطع y للدالة	3
✓	الدالة الفردية متماثلة حول نقطة الأصل	4
✓	اللو غاريتم العشري هو اللو غاريتم الذي أساسه 10	5
×	$0 < b < 1$ المعادلة $y = ab^x$ حيث $a > 0$ تمثل معادلة نمو أسي إذا كانت	6
✓	$y^k=x$ يعبر $log_y x=k$ في الصورة الأسية	7
×	مقدار إزاحة الدالمة $f(x) = x-4 $ هو 4 وحدات لأعلى	8

$$3^{1-x} = 3^{x+2}$$
 الحل $1-x = x+2$ $2x = -1$ درجة $x = \frac{-1}{2}$ درجة

المملكة العربية السعودية
وزارة التعليم
لإدارة العامة للتعليم بمنطقة جازان
مكتب التعليم بــــــــــــــــــــــــــــــــــــ
اسم المدرسة :
فم الوزاري:

التاريخ: / / 1446هـ

بتبع

السؤال الثالث: أجب عما يلي ؟ أولا : حل المتباينة

$$log_3(3x-4) < log_3(x+1)$$
 الحل $3x-4 < x+1$ عرجة $2x < 5$ عرجة $x < \frac{5}{2}$ عرجة

ثانيا : المسافة التي يقطعها جسم ساقط من مكان مرتفع تعطي بالدالة $d(t)=16t^2$ ، فأوجد السرعة المتوسطة على الفترة من 0 إلى 2 ثانية.

الحل
$$\frac{d(2)-d(0)}{2-0} = \frac{16(2)^2-16(0)^2}{2-0}$$

$$= \frac{16(2)^2-16(0)^2}{2-0}$$

$$= \frac{16(2)^2-16(0)^2}{2-0}$$

$$=\frac{64}{2}=32$$
 درجة

$$(f+g)(2)$$
 ثم أوجد قيمة $f(x)=x^2$ و $g(x)=5x$ ثالثا: إذا كانت $g(x)=5x$ و الحل الحل الحل $(f+g)(x)=x^2+5x$ ورجمة $(f+g)(2)=(2)^2+5(2)$ ورجمة المحل

$$y)(2) = (2)^{2} + 3(2)^{2}$$
 $=4 + 10 = 14^{2}$
 $= 4 + 10 = 14^{2}$

انتهت الأسئلة ويكتب اسم المعلم وتوقيعه

المملكة العربية السعودية

وزارة التربية والتعليم

إدارة تعليم البنات بالأحساء

الزمن: - ثلاث ساعات

الصف: - ثالث ثانوي علمي

الاسم:- رقم الجلوس:-

اسئله اختبار الفصل الدراسي الاول لماده الرياضيات للصف الثالث ثانوي لعام (الفصل الدراسي الاول)

بع المجموع		ال الراب	السؤ	الث	السؤال الث	ال الثاني	السؤ		الأو ل	السؤال
					المراجعة			أ- ناديه البندر	٠ ق -	المصح
				ربجعه				J	•	
$\frac{13}{13}$ $\left(\frac{A}{9}\right)$ اختاري الإجابة الصحيحة مما يلي:										
القطع الناقص الذي معادلته $1 = \frac{(y-1)^2}{16} + \frac{(y-1)^2}{9}$ يكون طول محوره الاكبر										1
	1	D		5	~ C	4	~ B	8	A	
تمثل الدالة $y=\sqrt{2}+1$ إزاحة لمنحنى الدالة الرئيسية (الأم) $y=\sqrt{2}+1$ وحده واحدة إلى									2	
ر	اليسار			اليمين	~ C	الاعلى	~ B	الاسفل	A	<u> </u>
		<u> </u>	<u> </u>			$(1-\cos\theta)$)(1 -	$+\cos heta$ يط العبارة $\cos heta$	تبس	3
$sec^2\theta$		D		$\tan^2\theta$	~ C	2	~ B		~ A	(S)
$7^{ ext{x-1}} + 7 = 8$ التي تحقق المعادلة $7 = 7$										4
	0	D		8		1	~ B	7 .	~ A	
				ن مرکزه	^{ر)} يكو	$\frac{(y+1)^2}{9} - \frac{(y+1)^2}{16}$	$\frac{1}{1} = 1$	لع الزائد الذي معادلته	القط	(5)
(-	1, -5)	D		(1, -5)	~ C	(-5,1)	~ B	(5, -1)	~ A	
				••••	x = x	ال قيم log ₄ فإن قيم	(x –	$(-5) = \log_4 3$ کان	إذا ك	6
	-1	D			<i>C</i>		~ B	4	~ A	0
				•	رة	فترة على الصو	ىتخدام	تمثل باس $-3 \leq x <$	5	7
[-3,5]		D	((-3,5)	~ C	(-3,5]	~ B	[-3,5)	~ A	
الدالة $\mathbf{f}(\mathbf{x}) = \frac{1}{x^2}$ غير متصلة عند $\mathbf{x} = 0$ ونوع عدم الاتصال								8		
نقطي		D		ابل للازاله	<u> </u>	لانهائي	~ B	. قفزي	~ A	
log ₁₀ (-5) تساوي									· 5)	9
	1	D		10	~C	-5	~ B	، غیر معرف	~ A	
		<u> </u>	I			JL	<u> </u>			

$\overline{2}$	و $\frac{x-9}{4}$ داله عکسیة للأخر ? $ g\left(x\right) = \frac{x}{4} f\left(x\right) = 4 \; x + 9 $
$\left(\frac{\overline{2}}{2}\right)$	(C) أكتب معادلة الدائرة التي مركزها (0 , 0) ، ونصف قطرها 4
<u>12</u>	السؤال الثاني : $X=1$ التصبح متصله عند $f(x)=rac{X^2-1}{X-1}$ اتصبح متصله عند $f(x)=rac{X^2-1}{X-1}$
$\left({2}\right)$	
$\overline{2}$	(B) بدون استعمال الاله الحاسبه أوجدي القيمه الدقيقه ل °3in 105 مستخدمه متطابقات المجموع
	(C) اجيبي عما هو مطلوب:
	((اللهم لا سهل إلا ما جعلته سهلا وأنت تجعل الحزن إذا شئت سهلا))

اكتب 10g 3 20 بدلالة اللوغارية العشري	1
من خلال شكل المنحنى المرسوم	2
= all left = 0 $= all left = 0 $ $= all left$	
بسطي العبارة	3
$= \frac{\sin^2 \theta}{\sin^2 \theta + \cos^2 \theta}$	
$=3^{2x-2}<27$ حل المتباينة	4
$g(x)=2x^2+3x-5$ اِذَا كَانْت $g(x)=2x^2+3$ فَانْ	5
اذا كانت $y= x +4$ فان الداله الرئيسه الام للداله هي $y= x +4$	6
اذا كانت $ an heta = \cot heta$ حيث $ an heta < 0^\circ < heta < 90^\circ$ فإن $ an heta$ تساوي	7
	,
اكتب $4=16$ على الصورة الأسية $\log_2 16$	8

	السؤال الثالث: (A) اجيبي حسب ماهو مطلوب $4^3 = 64 \boxed{1}$ $4^3 = 64 \boxed{1}$
	2cos θ - 1 = 0(2)
	اكتب العبارة اللوغاريتمية بالصورة المختصرة 3 $2\log_8 9 x - \log_8 (2x - 5)$
	$1+2 \sin \theta \cos \theta = (\sin \theta + \cos \theta)^2$
2	((اللهم لا سهل إلا ما جعلته سهلا وأنت تجعل الحزن إذا شئت سهلا))

	$f^{-1}(x)=$ اوجدي الدالة العكسية للدالة : $f(x)=rac{X+7}{X}$	(5)
$\overline{2}$	$4y^2 - 8x + 6y - 14 = 0$ باستخدام المميز حدد نوع القطع المخروطي	6
$\overline{\left(\frac{2}{2}\right)}$	$f({ m x}) = - { m x}^3 + 3{ m x}$ اوجد متوسط معدل التغير للدالة $f({ m x}) = - { m x}^3 + 3{ m x}$	
$\left({2}\right)$	$rac{(x-6)^2}{100} + rac{(Y+1)^2}{9} = 1$ حدد الاختلاف المركزي للقطع الناقص المعطاة معادلته $= 1$	8
	$(x-4)^2=8(y+3)$ اكمل خصائص القطع المكافئ $(X-4)^2=8(y+3)$ اكمل خصائص القطع المكافئ $(X-4)^2=8(y+3)$ هم لا سهل إلا ما جعلته سهلا وأنت تجعل الحزن إذا شئت سهلا))	

محورالتماثل	الدليل	البؤرة	الرأس	الاتجاه	المعادله في الصوره القياسيه

 $\overline{10}$

تصحيح الخطأ ان وجد			ن علامة $$ امام العبارة الصحيحة و علامة $ imes$ امام العباره الخاطئه $$	B)
	()	اذًا كان $ heta$ موجبه فان $ heta$ تقع في الربع الثالث $\sin heta$	1
	()	الدالة $\mathbf{h}(\mathbf{x}) = X^3 + 1$ هي دالة زوجيه	2
	()	$0 = \log_7 7$	3
	()	إذا كان المميز ${ m B}^2 - 4~{ m AC} > 0$ فإن القطع مكافئ	4
	()	قيمة 27 log ₃ 27 تسا <i>وي</i> 5	(5)
	()	نصف قطر الدائرة التي معادلتها 25 $y^2 = 2+ (x-3)^2$ هو 5	6
	()	المتطابقة $ au= au \cos^2 heta + \sin^2 heta$ تسمى متطابقة فيثاغورث	7
	()	الدالة $y=3^x+2$ تمثل ازاحة لمنحنى الدالة $y=3^x$ وحدتان للأعلى	8
	()	$\log_{x}(a.b) = \log_{x} a + \log_{x} b$	9
	()	$\sin(A-B)$ تساوي $\sin A \cos B - \cos A \sin B$ المتطابقة	10

انتهت الاسئله مع تمنياتنا لكن بالتوفيق والنجاح

المملكة العربية السعودية وزارة التربية والتعليم الإدارةالعامة للتربية والتعليم

إسم الطالب / رقم الطالب /

التاريخ: الصف: الثالث ثانوي الزمن: ثلاث ساعات المادة: رياضيات (٥)

إختر الإجابة الصحيحة فيما يلي ثم ظلل الحرف الذي يمثلها في ورقة إجابتك :

	فترة كالتالي:	ياستعمال رمز الا $-4 \leq y$ <	يمكن كتابة المجموعة 1->	()
(-4,-1) ([-4,-1) ②	(-4,-1]	[-4,-1] (*)	
	تساوي: f ($(2a-1)$ فإن قيمة $f\left(x ight)$	$(x^2 - 2x - 8) = x^2 - 2x - 8$ إذاكان	۲)
$4a^2 - 8x - 5$ (2)	$4a^2 - 8x - 9$	$2a^2 - 8x - 5$	$4a^2 + 8x - 5$	
		h(x) =	$\sqrt{9-x^2}$ بجال الدالة	(۳
$[-1,\infty)$ (a	(-3,3) 🕏	[-3,3]	[-9,9] (1	
		. عي: $g\left(x\right)$	$=x^3-x$ أصفار الدالة	(٤
-1,0,2 (-2,0,1 🕏	-1,1	-1,0,1 (
		.) g هي دالة:	$(x) = x^3 - 4x$	(°
د) فردية	﴿ زوجية	لازوجية ولافردية	۴ فردية وزوجية	
	م الإتصال هو:	x=0 ونوع عد $x=0$	الدالة $f(x) = \frac{1}{x^2}$ غير ه	۲)
عابل للازالة	ج نقطي	ل لا نهائي	ا قفزي	
وحدات لأعلى هي	ر د وحدات لليمين و 3 م $f(x)$	$(x) = x^2$ عن إنسحاب المنحنى	معادلة المنحنى $g(x)$ الناتج	(^
$g(x) = (x+4)^2 + 3$	$g(x) = (x-4)^2 + 3 $	$g(x) = (x+3)^2 - 4 \bigcirc$	$g(x) = \left(x - 3\right)^2 + 4 $	
	($1,\infty)$ تكون في الفترة	$h(x) = x^3 - 3x$ الدالة	(^
د) غير معرفة	(جى متناقصة	﴾ ثابتة	ا متزايدة	
	f في الفترة [2,5] يساوي:	$(x) = -2x^2 + 4x + 6$	متوسط معدل التغير للدالة	(٩
-15 G	-10 €	-304	15 (r	
	$(g \circ f)(x) = \dots$	g(x) = x - 7 فإن	$f(x) = x^2 + 1$ إذاكانت	().
$x^{3}+1$ (3	$x^2 - 14x + 50$	x^2-6	x^2-8	
		$f(x) = \frac{x+1}{x}$ هي:	الدالة العكسية للدالة	(11
$\frac{7}{x-1}$ (s	$\frac{7-x}{x}$	$\frac{x}{7-x}$	$\frac{-x-7}{-x}$	
8 9			من الشكل المجاور مدى الد	(17
-8 -4 O 4	(-4,2)	(2,∞) ቒ	$(-\infty,-2)\cup\{6\}$ (†	
-4	$(-\infty, -2$]U{5}(4	$(-\infty,\infty)$ ②	

		$9^{2x-1} = 3^6$	5x حل المعادلة التالية:	(18
x = 1 (s)	x = -1	x = 3	$x = 5^2 \text{ (p)}$	
	::	ا	,	() £
3log ₄ 64 (3	$\log_4 3 = 64$ ②	$\log_4 64 = 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\log_3 64 = 4$ (*)	
	رة الأسية :	الصور log ₃ 729	الصورة اللوغاريتمية 6=	(10
$3^6 = 729$ (s	$6^3 = 729 $	$729^3 = 6 \bigcirc$	$3^6 = \log 729$ (*)	
		$\log_2 \frac{1}{32} = \dots$	قيمة العبارة	() 7
$\frac{1}{5}$	$-\frac{1}{5}$	5 🗗	-5 (1	
		$\log_7 \sqrt[6]{49} =$	قيمة العبارة	() /
1/5 G	$\frac{1}{3}$	$\frac{1}{7} \circlearrowleft$	$\frac{1}{6}$	
لختصرة كالتالي:	310 تُكتب بالصورة ا	$\log_2 x - 5\log_2 y$	العبارة اللوغاريتمية	(14
$\log_2 \frac{x^3}{y^5} \ \ \Box$	$\log_2 \frac{y^5}{x^3}$	$\log_4 x^2 y^5$	$\log_2 x^3 y^5$	
	هو:	$\log_3(x^2 - 15) = \log_3(x^2 - 15$	$\frac{2x}{3}$ حل المعادلة	(19
15 (3	-1 🔊	-3 🕹	5 (*)	
	X =ا	²	$4^x = 19$ حل المعادلة	(۲.
12.4708 6	0.4708 🕞	2.1240 🗸	0.7711 (•	
رة آلاف يكون	ب الناتج إلى أقرب جزء من عش	الة اللوغاريتم العشري ، وبتقريـ	بحساب $\log_6 8$ بدلا	(۲)
9.7395 6	0.1249 🕞	,	0.8617 (
		2^{x+2}	 حل المتباينة حل المتباينة 	(7 7
$x > -8 \ ($	x > 8 ②	$x < -8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	x > -4 (†	
	$\log_4 x$ –	$\log_4(x-1) = \frac{1}{2}$	أيٌ مما يأتي يمثل حلاً للمعادلة	(۲۳
$-\frac{1}{2}$ (a	$\frac{1}{2}$	-24	2 (1	
_	– b تسمى دالة	> 1 حيث (x) = الجاد	b^x الدالة التي علي الصورة	(Y £
 لوغاريتمية 	(ج) النمو الأسّي	 الإضمحلال الأسي 	أ الميل الأسّي	

Si	بن	ث 270° < θ < 360°	$\cos \theta = \frac{1}{2}$ اذاکانت ا	(۲٥
$-\frac{1}{2}$ (§	$-\frac{\sqrt{2}}{2}$ ©	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2} \left(\theta \right)$	
		هو $\frac{\sec \theta}{\sin \theta} (1 -$	$-\cos^2 heta$ تبسيط العبارة	(۲۲
$\sec \theta$ (s	$\tan \theta$ (2)	$\csc \theta \bigcirc$	$\cot \theta$	
		هو $\cos^2 \theta + \tan \theta$	$\ln^2 heta\cos^2 heta$ تبسيط العبارة	(**
$\cos \theta$ (2 @	1 &	$\sin heta$ (†	
		0° < θ < 90° حيث	$\cos heta$ أيٌ نما يأتي لا يكافئ	(۲۸
$\tan \theta \csc \theta$ ($\cot \theta \sin \theta$	$\frac{\cos\theta}{\cos^2\theta + \sin^2\theta} \bigcirc$	$\frac{1-\sin^2\theta}{\cos\theta} \ ($	
			قيمة °sin 15 تساوي	(۲۹
$\frac{\sqrt{6}-\sqrt{2}}{4} \ ($	$\frac{\sqrt{6}+\sqrt{2}}{4} \ \textcircled{2}$	$\frac{\sqrt{2}-\sqrt{6}}{4}\bigcirc$	$\frac{\sqrt{5}-\sqrt{2}}{4} \ \bigcirc$	
		$\frac{\tan 30^{\circ} + 1}{1 - \tan 30^{\circ}}$		(* •
-1 &	tan 15° 🕞	1 (J		
	I	sin	قيمة علم 20	("1
$2\cos^2\theta-1$ (§	$2\sin\theta\cos\theta$ (2)	$\sin\theta\cos\theta$	$1-2\sin^2\theta$	
		تساوي $2\cos^2\theta-1$	من متطابقات ضعف الزاوية	(٣٢
$\sin 2\theta$ (sec 2θ €	$\tan 2\theta \bigcirc$	$\cos 2\theta$ (†	
	ڪ $^\circ$ تساوي	\leq $ heta$ اِذاكانت $ heta$ إذاكانت إذاكانت $ heta$	$\ln \theta - 1 = 0$ حل المعادلة	(٣٣
45°,225° (3	30°,90° (₹)		45° (†	
	_		$\cos \theta = \frac{\sqrt{3}}{2}$ إذا كانت	(٣٤
2+√3 €	$\sqrt{3}$ \odot		$\sqrt{3}-2$ (9	
		تساوي $\cos A \cos B$	$-\sin A \sin B$ المتطابقة	(٣٥
$\tan(A-B)$ (3	$\sin(A-B)$		$\cos(A-B)$	/##
			$-\sin heta$ تبسيط العبارة $-\sin heta$	(٣٦
$\cot^2 \theta$	$\cos^2\theta$ (2)	$\tan^2\theta$	7	/ W \ 1
	,	1	$ \operatorname{in}\left(\theta + \frac{\pi}{2}\right) $ العبارة	(**
$-\cos\theta$ (s	$\sin \theta$	$\cos \theta \bigcirc$	$-\sin\theta$	

هو المحل الهندسي لجميع النقاط المستوية التي يكون الفرق المطلق بين بعديها عن بؤرتين مقدار ثابتاً.					
	ج قطع مكافيء				
] يكون مفتوح ناحية	$(y+4)^2 = -12(x-6)$	القطع المكافيء الذي معادلته	(٣٩	
د) الأعلى	﴿ الأسفل	ل اليمين	اليسار السار		
		$(x-4)^2 = 8(y+3)$		(٤٠	
(6,-1) [3		(4,-5)			
		= 2x + 1 دلته العامة	_	(٤)	
(1,-2) ((2,-1)			
		سه (4,1) و معادلة دليله		۲٤)	
	$\left(y+1\right)^2 = -8\left(x+4\right) \ $		l .		
	 یکون طول محوره الاکبر 			(
ا 16 وحدة	8 وحدات				
		$\frac{x^2}{25} + \frac{y^2}{16} = 1$ تكون إ		(
	(0,±3) 🕞			44.5	
	 ا وحدات و محورة الاكبر ينطبق 			(
$\frac{x^2}{25} + \frac{y^2}{16} = 1$ (§	$\frac{y^2}{25} + \frac{x^2}{16} = 1$	$\frac{x^2}{100} + \frac{y^2}{64} = 1 \bigcirc$	$\frac{x^2}{25} - \frac{y^2}{16} = 1$		
ليا	يساوي تقر $\frac{(y-2)^2}{48} + \frac{(x-2)^2}{48}$	$\left(\frac{(1-1)^2}{36}\right)^2=1$ ئد الذي معادلته	الاختلاف المركزي للقطع الزا	(
0.35(3)	1.53 🕞	0.76 🖟	1.32 (†	141	
*	، والبؤرتان (3,3), (-3,-3			(£ V	
$\frac{(y+3)^2}{16} - \frac{(x+2)^2}{9} = 1$	$\frac{(x+2)^2}{16} - \frac{(y+3)^2}{9} = 1$	$\frac{(y+2)^2}{16} - \frac{(x+3)^2}{9} = 1$	$\frac{(y+2)^2}{9} - \frac{(x+3)^2}{16} = 1$		
	$\dots \qquad x^2 - 4y$	$y^2 - 6x - 8y = 27$	مركز القطع الزائد الذي معاد	(£ \	
(1,-3)	(3,-1) ②		ì í		
	3 <i>x</i>	$x^2 - 6x + 4y - 5y^2 + $	-2xy - 4 = 0 المعادلة	(
د) قطع مكافيء	ج قطع زائد		۴) قطع ناقص		
	ئرة طول قطرها	غُثل معادلة دا $\left(x+5\right)^2+$	$-(y-1)^2=16$ المعادلة	(0,	
ا 8 وحدات	16 جدة	4 وحدات	4 وحدات		

المملكة العربية السعودية وزارة التربية والتعليم الإدارةالعامة للتربية والتعليم

نموذج الإجابة

التاريخ: / / ١٤ هـ الصف: الثالث ثانوي الزمن: ثلاث ساعات المادة: رياضيات (٥)

إختر الإجابة الصحيحة فيما يلي ثم ظلل الحرف الذي يمثلها في ورقة إجابتك :

	نفترة كالتالي:	ياستعمال رمز ال $-4 \leq y$ <	يمكن كتابة المجموعة 1- >	(,
(-4,-1) (e	[-4,-1) 🕏	(-4,-1]	[-4,-1] (*)	
	f تساوي:	f(x) فإن قيمة $f(x)$	$(x^2-2x-8) = x^2-2x$ اِذَاكان	(٢
$4a^2 - 8a - 5$ (§	$4a^2 - 8a - 9$	$2a^2 - 8a - 5$	$4a^2 + 8a - 5$	
		h(x) =	$\sqrt{9-x^2}$ بحال الدالة	(۳
$[-1,\infty)$ (a	(-3,3) 🔊	[-3,3]	[-9,9] (
		. عي: $g\left(x\right)$	$=x^3-x$ أصفار الدالة	(٤
-1,0,2 (-2,0,1 🕏	-1,1	-1,0,1 (†	
		.) <i>g</i> هي دالة:	$(x) = x^3 - 4x$ ILLIUS	(°
د) فردية	﴿ زُوجية	🖟 لازوجية ولافردية	۴) فردية وزوجية	
	م الإتصال هو :	x=0 عند $x=0$ عد	الدالة $f(x) = \frac{1}{x^2}$ غير ه	(۲
غابل للازالة	ج نقطي	ب لا نهائي	۴) قفزي	
رحدات لأعلى هي	ه وحدات لليمين و x و $f(x)$	$(x) = x^2$ عن إنسحاب المنحنى	معادلة المنحنى $g(x)$ الناتج ع	(٧
$g(x) = (x+4)^2 + 3$	$g(x) = (x-4)^2 + 3$	$g(x) = \left(x+3\right)^2 - 4 \bigcirc$	$g(x) = (x-3)^2 + 4$	
	(2	$1,\infty)$ تكون في الفترة	$h(x) = x^3 - 3x$ الدالة	(^
د) غیر معرفة	ج متناقصة	🕁 ثابتة	ا متزايدة	
	f في الفترة [2,5] يساوي:	$(x) = -2x^2 + 4x + 6$	متوسط معدل التغير للدالة	(٩
-15 (-10 ⊛	-306	15 (
	$(g \circ f)(x) = \dots$	g(x) = x - 7 فإن	$f(x) = x^2 + 1$ إذاكانت	(,.
$x^{3}+1$ (3	$x^2 - 14x + 50$	x^2-6	x ² -8 (p	
		$f(x) = \frac{x+x}{x}$	الدالة العكسية للدالة	(11
$\frac{7}{x-1}$ (a	$\frac{7-x}{x}$	$\frac{x}{7-x}$	$\frac{-x-7}{-x}$	
8 4 9		g(x)	من الشكل المجاور مدى الد	(17
-8 -4 0 4	(-4,2)	(2,∞) 🗸	$(-\infty,-2)\cup\{6\}$	
-4 -8	$(-\infty, -2]$]U{5}{	$(-\infty,\infty)$ ②	
		• ••		

				~
(17	6x حل المعادلة التالية:	$9^{2x-1} = 3$		·
	$x = 5^2 \ ($	x = 3	x = -1	$x = 1 \in$
(1 £	$4^3 = 64$ الصورة الأسية	تكافئ الصورة اللوغاريتمية	:	
	$\log_3 64 = 4$ (*)	$\log_4 64 = 3 \circlearrowleft$	$\log_4 3 = 64 \ \odot$	3log ₄ 64 (3
(10	الصورة اللوغاريتمية =6	log ₃ 729 تكافئ الصور	رة الأسية :	
	$3^6 = \log 729$ (*)	$729^3 = 6$	$6^3 = 729 $	$3^6 = 729$ (3
(17	قيمة العبارة	$\log_2 \frac{1}{32} = \dots$		
	-5 (5 🗗	$-\frac{1}{5}$	$\frac{1}{5}$
(14	قيمة العبارة	$\log_7 \sqrt[6]{49} =$		
	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{3}$	1/5 G
(14	العبارة اللوغاريتمية	$\log_2 x - 5\log_2 y$	310 تُكتب بالصورة الم	لختصرة كالتالي:
	$\log_2 x^3 y^5 = 6$	$\log_4 x^2 y^5 $	$\log_2 \frac{y^5}{x^3} \odot$	$\log_2 \frac{x^3}{y^5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(19	حل المعادلة 2x	$\log_3(x^2 - 15) = \log$	هو:	
	5 (*)	-3 &	-1 🔊	15 4
(۲.	$4^x = 19$ حل المعادلة	لأقرب جزء من عشرةآ	لاف هو ا	
	0.7711 (1	2.1240	0.4708 🕞	12.4708 6
(*)	بحساب $\log_6 8$ بدلا	لة اللوغاريتم العشري ، وبتقريه		رة آلاف يكون
	0.8617 (1.1606 &	0.1249 🕤	9.7395 6
(* *	 حل المتباينة حل المتباينة 	2^{x+2}		
	x > -4	$x < -8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	x > 8 @	x > -8
(۲۳	أيٌ مما يأتي يمثل حلاً للمعادلة	$-\log_4(x-1) = \frac{1}{2}$	$\log_4 x$ –	
	2 (†	-24	$\frac{1}{2}$	$-\frac{1}{2}$ (\bullet
(* £	b^{x} الدالة التي علي الصورة	> 1 حيث (x) =	تسمى دالة $$	
	الميل الأسي	ل الإضمحلال الأسّي	🕏 النمو الأسّي	د) لوغاريتمية

Sil	إن	يث 270° < θ < 360°	$\cos \theta = \frac{1}{2}$ اذاکانت	(7 0
$-\frac{1}{2}$ ($\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$		
		$\frac{\sec heta}{\sin heta}ig(1-$ هو	$-\cos^2 heta$ تبسيط العبارة	(۲٦)
$\sec \theta$ (3	$\tan \theta$	$\csc \theta$	$\cot \theta$ (†	
		هو $\cos^2 \theta + \tan \theta$	$ n^2 \theta \cos^2 \theta $ تبسيط العبارة	(۲۷
$\cos \theta$ (2 🕣	1 &	,	
			$\cos heta$ أيٌّ مما يأتي لا يكافئ	(۲۸
$\tan\theta \csc\theta$ ($\cot \theta \sin \theta$		$\frac{1-\sin^2\theta}{\cos\theta}$	411.4
			قيمة °sin15 تساوي	(7 9
$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4} \ \textcircled{e}$	$\frac{\sqrt{2}-\sqrt{6}}{4}$	$\frac{\sqrt{5}-\sqrt{2}}{4} \ \bigcirc$	
		$\frac{\tan 30^{\circ} + t}{1 - \tan 30^{\circ}}$	an15° = قيمة	(* •
-1 &	tan 15° 🕞	16	1	
		sin	قيمة = 20	(٣)
$2\cos^2\theta-1$ (§	$2\sin\theta\cos\theta$	$\sin\theta\cos\theta$	$1-2\sin^2\theta$	/ !!! !!
	Ç	تساوې $2\cos^2 \theta - 1$	من متطابقات ضعف الزاوية	(٣٢
$\sin 2\theta$ (3	$\sec 2\theta$,	
	≥ °0 تسا <i>وي</i>	$\leq \theta \leq 360^\circ$ إذاكانت ta	$\mathbf{n}\theta - 1 = 0$ حل المعادلة	(٣٣
45°, 225° (3	30°,90° 🕞	45°,210°	45° (†	
		حيث °90 < \theta < 90° فإن قيد		(° £
2+√3 €	$\sqrt{3}$ \odot	$2-\sqrt{3}$,	
		تساوي $\cos A \cos B$	$-\sin A \sin B$ المتطابقة	(٣٥
$\tan(A-B)$	$\sin(A-B)$	$\cos(A+B)$, ,	
		هو $(1+\sin\theta)(1$	$-\sin heta$ تبسيط العبارة $-\sin heta$	(٣٦
$\cot^2 \theta$ (3	$\cos^2\theta$	$\tan^2\theta$	$\sec^2\theta$ (†	
		s تكافئ	$ \operatorname{in}\left(\theta + \frac{\pi}{2}\right) $ العبارة	(**
$-\cos\theta$ ($\sin \theta$	$\cos \theta$	$-\sin\theta$	

بؤرتين مقدار ثابتاً.		ي لجميع النقاط المستوية التي يَ	هو المحل الهندس	(٣٨
	🕣 قطع مكافيء	<u>`</u>		
	رً) يكون مفتوح ناحية	$(x+4)^2 = -12(x-6)$	القطع المكافيء الذي معادلته	(٣٩
د) الأعلى	ج الأسفل	ل اليمين	اليسار الم	
	كون بؤرته	$(x-4)^2 = 8(y+3)$	القطع المكافيء الذي معادلته	(٤٠
(6,-1) (L.	(4,-5)		
		= 2x + 1 دلته العامة		(
(1,-2) (e		(2,-1)		
		سه $ig(4,1ig)$ و معادلة دليله		(
	$(y+1)^2 = -8(x+4)$			/ 4 W
	 د) یکون طول محوره الاکبر 	$\frac{(x-3)^2}{9} + \frac{(y-1)^2}{16} = 1$	القطع الناقص الذي معادلته	(
ا 16 وحدة	8 وحدات	4 وحدات	۴) 4 وحدات	
		تكون $\frac{x^2}{25} + \frac{y^2}{16} = 1$		(
	(0,±3) ②			// 2
	1 وحدات و محورة الاكبر ينطبق			(
	$\frac{y^2}{25} + \frac{x^2}{16} = 1$			
	يساوي تقر $\frac{(y-2)^2}{48} + \frac{(x-2)^2}{48}$	$(-1)^2 = 1$ ئد الذي معادلته $(-1)^2 = 36$		(
0.35 4	9	0.76		(£ Y
*	، والبؤرتان (3,3), (-3, -			(
$\frac{(y+3)^2}{16} - \frac{(x+2)^2}{9} = 1$	$\frac{(x+2)^2}{16} - \frac{(y+3)^2}{9} = 1$	$\frac{(y+2)}{16} - \frac{(x+3)}{9} = 1$	$\frac{(y+2)}{9} - \frac{(x+3)}{16} = 1$	
	$x^2 - 4y$	$y^2 - 6x - 8y = 27$	مركز القطع الزائد الذي معاد	(£ A
(1,-3) (3)				44.0
	3x غُثل :	$x^2 - 6x + 4y - 5y^2 +$	-2xy - 4 = 0 المعادلة	(٤ ٩
د) قطع مكافيء	ج قطع زائد	ا دائرة	J C 2	
	ئرة طول قطرها	غُثل معادلة دا $\left(x+5\right)^2+$	$-(y-1)^2 = 16$ المعادلة	(0,
8 وحدات	🕣 16 وحدة	ع وحدات	۴) 4 وحدات	

مع أطيب التمنيات لكم بالتوفيق والنجاح

٤

المادة: رياضيات الصف: ثالث ثانوي

الشعبة: اليــوم:

التاريخ: -٤-٢٤٤٦هـ الفترة: الأولى

الزمن: ثلاث ساعات

بسم الله الرحمن الرحيم وزارة التعليم

المملكة العربية السعودية وزارة التعليم إدارة التعليم بمنطقة الـ مكتب تعليم الثانوية الأولى العام

اختبار الفصل الدراسي الأول (الدور الأول) للعام الدراسي ٢٤٤٦هـ

	 _
5 ·	. 1
-	\

اسم الطالبة
رقم الجلوس

اسم المدققة وتوقيعها	اسم المراجعة وتوقيعها	اسم المصححة وتوقيعها	الدرجة		السؤال
وتوقيعها	وتوقيعها	وتوقيعها	كتابة	رقما	السوال
					١س
					س۲
					المجموع

(ابنتي الحبيبة استعيني بالله وتوكلي عليه فبسم الله)

السؤ	سؤال الأول / اختاري الإجابة الصحيحة من الخيارات التالية								۲۰ درجة	
	الص	$\{x x<7,x\in R\}$ الصفة الميزة								
,	a	x > 7	b	$x \le 7$	с	x < 7	d	$x \ge 7$		
۲	باس	متعمال رمز الفترة يمكن ك	ئتابة	$x \leq 16$ المجموعة التالية	<:	8– على الصورة				
	a	[8, 10)	b	[5, 16]	С	(-8, 16]	d	(5,14)		
٣	إذا	$x^2 + 8x - 24$ کانت	=	قیمة فإن $f(6)$ ه	مي					
	a	90	b	40	c	60	d	30		
٤	مج	$)=\sqrt{t-5}$ الدالة	g(t	هو						
	a	(-∞,4)	b	(-∞,6]	c	[5,∞)	d	$[-\infty,\infty]$		
٥	الد	$f(x) = x^4 + 2$		تكون دالة						
	a	فردية	10000	ليست زوجية ولا فردية	с	زوجية	d	غير ذلك		
	قيه	مة الاختلاف المركزي للقم	لع الر	$rac{(1)^2}{(1)^2}=1$ زائد الذي معادلته	(x+5)	$\frac{(y-4)^2}{48}$ –				
٦	a	$\frac{65}{\sqrt{18}}$	b	$\frac{\sqrt{84}}{\sqrt{48}}$	с	$\frac{\sqrt{8}}{74}$	d	$\frac{\sqrt{58}}{7}$		
٧	الدالة على الصورة $f(x)=b^x$ ، حيث $b>1$ ، هي دالة:									
•	a	اضمحلال أسي	b	نمو أسي	с	لوغاريتمية	d	كثيرة حدود		

إذا ك	$f(x_1) = f(x_2)$ کانت	f فإ	ن الدالة تكون						
a	متزايدة	b	ثابتة	с	متناقصة	d	غير ذلك		
الدالة $f(x)= x +4$ تمثل إزاحة أربع وحدات إلى									
a	الأسفل	b	الأعلى	c	اليسار	d	اليمين		
إذا ك	$x) = \sqrt{x+2}$ كانت	g(.	$\dot{a}f(x) = x^2 + 4x ,$	فإن (f + g(x)				
a	$4x + \sqrt{x}$	b	$x^2 + 4x + \sqrt{x+2}$	С	$x^2 + \sqrt{x+2}$	d	$x^{2} + 4x$		
حل	$2^x = 8^3$ المعادلة								
a	9	b	15	С	20	d	10		
a	$A = P(1 + \frac{r}{n})^{nt}$	b	$A = P(1 - \frac{r}{n})^{nt}$	с	$A = P(1+n)^{nt}$	d	$A = P(1+r)^{nt}$		
الص	مورة اللوغاريتمية 3 = 3	g ₂ 8	lo تكافئ الصورة الأسية						
a	$8 = 2^3$	b	$9 = 3^4$	с	$5^2 = 10$	d	$3^2 = 2$		
	(47) (25)(117) (47)	log	4 تكافئ						
a	$log_2 \frac{x^4}{y^5}$	b	$-\log_2(x-y)$	с	$log_2 x^3 y^6$	d	$log_2 x^5 y^8$		
		ي 1	$\frac{(x-1)^2}{36} - \frac{(y+5)^2}{9} =$	ن مردَ	کزه هو				
a	(1, -5)	b	(6,2)	с	(1, -6)	d	(3,6)		
باسنا	تخدام المميز فإن المعادلة	8	$y + y^2 + 4x - 5y -$	3 <i>x</i>	$4x^{2}$ —				
a	قطع مكافئ	b	قطع ناقص	с	قطع زائد	d	دائرة		
2	$=rac{1}{2}$ تساوي	17.		0					
a	$\log_5 3 = \frac{1}{3}$	b	$\log_4 2 = \frac{1}{2}$	с	$\log_2 7 = 4$	d	$\log_5 3 = 5$		
قيما	$\theta = \frac{1}{4}$ إذا كان $\cos \theta$	in 6	$0^{\circ} < \theta < 180^{\circ}$	90					
a	$\frac{\sqrt{19}}{7}$	b	$\frac{-\sqrt{15}}{4}$	с	$\frac{3}{2}$	d	$\frac{5}{\sqrt{3}}$		
قيما	ة log ₁₆ 4 هي								
a	<i>y</i> = 6	b	$y=\frac{1}{2}$	c	y = -2	d	y = 3		
باسن	تعمال الآلة الحاسبة فإن	، قيما	log 5						
a	3,5540	b	0,6990	c	2,4201	d	1,5689		
	a 引 a 治 a a a a a a a a a a a a a a a a	متزایدة a $f(x) = x + 4$ مالداله a a a a a a b a a a b a	الدالة $f(x) = x + 4$ تمة الأسفل $g(x) = \sqrt{x + 2}$ تا الأسفل $g(x) = \sqrt{x + 2}$ الأسفل $y(x) = \sqrt{x + 2}$ الأمادلة $y(x) = \sqrt{x + 2}$ المعادلة $y(x) = \sqrt{x + 2}$ المعادلة المعادلة المعادلة المعادلة الركب هي $y(x) = \sqrt{x + 2}$ الصورة اللوغاريتمية $y(x) = \sqrt{x + 2}$	الدالة $f(x) = x + 4$ تمثل إزاحة أربع وحدات إلى $f(x) = x^2 + 4x$, $g(x) = \sqrt{x+2}$ إذا كانت $x^2 + 4x + \sqrt{x+2}$ $y = x^2 $	c متزایدة b تابید میزاید میزادی ایران الد الله الله الد الله الله الله الله ا	متاقصة	d متزایدة c قبار الحق الحق وحدات الى الدائة b متزاوحة اربع وحدات الى الدائة a الاسلام c الإعلى b اليسار a الإسفار c الإعلى b (x)		

۲۰درجة		ل الثاني/ اختاري علامة (√) أمام العبارة الصحيحة وعلامة (*) أمام العبارة الخاطئة	السؤا
خطأ	صح	مجموعة الأعداد الكلية هي {1,2,3,}	,
خطأ	صح	من خصائص الدالة اللوغاريتمية أن مداها مجموعة الأعداد الحقيقة الموجبة فقط	۲
خطأ	صح	$f(x) = \llbracket x rbracket$ يرمز لدالة القيمة المطلقة بالزمر	٣
خطأ	صح	$\displaystyle \lim_{x o c} f(x) eq f(c)$ تكون الدالة متصلة إذا كان	٤
خطأ	صح	تكون الدالة f متزايدة على فترة ما إذا وفقط إذا زادت قيم $f(x)$ كلما زادت قيم x في الفترة	٥
خطأ	صح	إذا وجدت قيمة عظمى محلية للدالة وكانت أكبر قيمة في مجالها سميت قيمة عظمى مطلقة	٦
خطأ	صح	y=0 يمكن الحصول على صفر الدالة عند التعويض ب	٧
خطأ	صح	x الدالة المتباينة كل قيمة x ترتبط بقيمة واحدة y ولا توجد قيمة y ترتبط بأكثر من قيمة	٨
خطأ	صح	$b^y=x$ صحيحة y الذي يجعل المعادلة يعرف اللوغاريتم على أنه الأس	٩
خطأ	صح	تكون العبارة دالة إذا لم يقطع أي خط رأسي تمثيلها البياني في أكثر من نقطة	١٠
خطأ	صح	لوغاريتم القوة يساوي حاصل ضرب الأس في لوغاريتم أساسها	11
خطأ	صح	U يأخذ منحنى الدالة التربيعية $f(x)=x^2$ شكل حرف	۱۲
خطأ	صح	من خصائص القطع المكافئ أن له بؤرة واحدة ورأس واحد	١٣
خطأ	صح	$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$	١٤
خطأ	صح	القطوع المخروطية هي الأشكال الناتجة عن تقاطع مستوى ما مع مخروطين دائريين قائمين متقابلين بالرأس	10
خطأ	صح	متوسط معدل التغير بين أي نقطتين على منحنى الدالة f هو ميل المستقيم المار بهاتين النقطتين	١٦
خطأ	صح	من خصائص دالة الاضمحلال الأسي أنها متزايدة	۱۷
خطأ	صح	إذا كانت $B^2-4AC < 0$ يكون القطع قطع زائد	١٨
خطأ	صح	$\sin(A+B) = \cos A \cos B - \sin A \sin B$	۱۹
خطأ	صح	القطع الناقص هو المحل الهندسي لمجموعة نقاط مستوية تبعد البعد نفسه عن نقطة ثابته تسمى البؤرة	۲٠
-			

انتهت الأسئلة تمنياتي القلبية لكن بالتوفيق والنجاح معلمتكن / المسادة: رياضيات الصف: ثالث ثانوي

الشعبة: اليـــوم:

التاريخ: -٤-٤٤١هـ

ريض الفترة: الأولى الزمسن: ثلاث ساعات م الله الرحمن الرحيم

وزارة التعليم Ministry of Education المملكة العربية السعودية وزارة التعليم إدارة التعليم بمنطقة الـ مكتب تعليم الثانوية الأولى العام

اختيار الفصل الدراسي الأول (الدور الأول) للعام الدراسي ١٤٤٦هـ

٤٠

ه نموذج الإجابة

اسم المراجعة اسم المدققة		اسم المصححة	الدرجة	, , ,	
	وتوقيعها	وتوقيعها	كتابة	رقما	السؤال -
			عشرون درجة فقط لا غير	۲.	۱۰۰۰
			عشرون درجة فقط لا غير	۲.	۳س
			أربعون درجة فقط لا غير	٤.	المجموع

(ابنتي الحبيبة استعيني بالله وتوكلي عليه فبسم الله)

السؤ	سؤال الأول/ اختاري الإجابة الصحيحة من الخيارات التالية							۲۰ درجة	
١	الص	$7,x\in R\}$ مفة الميزة	<i>x</i> <	{x					
,	a	x > 7	b	$x \le 7$	С	x < 7	d	$x \ge 7$	
۲	باس	لتعمال رمز الفترة يمكن ك	تابة ا	$x \leq 16$ لجموعة التالية	8 <	– على الصورة			
,	a	[8, 10)	b	[5, 16]	С	(-8, 16]	d	(5,14)	
۲	إذا	$x^2 + 8x - 24$ کانت) =	قيمة فإن $f(6)$ هي $f(x)$					
,	a	90	b	40	c	60	d	30	
٤	مج	$(t-5)=\sqrt{t-5}$ ال الدالة	g(t	هو		7			
٠	a	(-∞,4)	b	(−∞, 6]	С	[5,∞)	d	$[-\infty,\infty]$	
٥	الد	$f(x) = x^4 + 2$	3	كون دالة					
	a	فردية	b	ليست زوجية ولا فردية	С	زوجية	d	غير ذلك	
	قيه	لة الاختلاف المركزي للقط	ع الزا	$\frac{+5)^2}{36}=1$ ئد الذي معادلته	<u>(x</u>	$\frac{(y-4)^2}{48}$,,	
٦	a	$\frac{65}{\sqrt{18}}$	b	$\frac{\sqrt{84}}{\sqrt{48}}$	С	$\frac{\sqrt{8}}{74}$	d	$\frac{\sqrt{58}}{7}$	
٧	الد	b^x الة على الصورة	f(x	، حيث $b>1$ ، هي دالة:					
V	a	اضمحلال أسي	b	نمو أسي	с	لوغاريتمية	d	كثيرة	حدود

,	إذا كانت $f(x_1)=f(x_2)$ فإن الدالة تكون									
	a متزای <i>د</i> ة	b ثابتة		С	متناقصة	d	غير ذلك			
٩	f(x) = x + 4 الدالة	تمثل إزاحة	ة أربع وحدات إلى	120						
	a الأسفل	b الأعلى	ی	c	اليسار	d	اليمين			
١.	$(x) = \sqrt{x+2}$ إذا كانت	4x , $g($	فار $f(x) = x^2 + \epsilon$	x) (f + g(z)	-				
	$4x + \sqrt{x}$ a	+ 2 b	$x^2 + 4x + \sqrt{x}$	С	$x^2 + \sqrt{x+2}$	d	$x^2 + 4x$			
,,	$2^x = 8^3$ حل المعادلة		×	.9						
	9 a	15 b		c	20	d	10			
١٢	قاعدة الربح المركب هي									
,,	$A = P(1 + \frac{r}{n})^{nt}$ a	$\left(\frac{r}{n}\right)^{nt}$ b	$A = P(1 - \frac{\eta}{\eta})$	С	$A = P(1+n)^{nt}$	d	$A = P(1+r)^{nt}$			
15	الصورة اللوغاريتمية 3 = 3	تكافر log_2	ئ الصورة الأسية							
,,,	$8 = 2^3$ a	= 3 ⁴ b	9 =	С	$5^2 = 10$	d	$3^2 = 2$			
	$g_2 x - 5 \log_2 y$ العبارة	4 lo تكافئ	ئ							
١٤	$log_2 \frac{x^4}{y^5}$ a	- y) b	$-\log_2(x-$	С	$log_2 x^3 y^6$	d	$log_2 x^5 y^8$			
10	إذا كانت معادلة القطع تساو	$\frac{(-5)^2}{9} = 1$ ي	$\frac{(x-1)^2}{36} - \frac{(y+1)^2}{6}$ فإن	ىركز	ه هو					
1 10	(1, -5) a	6,2) b			(1, -6)	d	(3,6)			
,,	باستخدام المميز فإن المعادلة	- 5 <i>y</i> – 8	$xy + y^2 + 4x -$	– 3	4x ²					
71	a قطع مكافئ	b قطع ا	ناقص	С	قطع زائد	d	دائرة			
	تساوي $4^{rac{1}{2}}=2$									
۱۷	$\log_5 3 = \frac{1}{3} \mid a$	$=\frac{1}{2}$ b	log ₄ 2	с	$\log_2 7 = 4$	d	$\log_5 3 = 5$			
	$\theta = \frac{1}{4}$ فیمة θ وزا کان	sin	$00^{\circ} < \theta < 180^{\circ}$	9						
١٨	$\frac{\sqrt{19}}{7}$ a	$\frac{\sqrt{15}}{4}$ b		С	$\frac{3}{2}$	d	$\frac{5}{\sqrt{3}}$			
	قيمة 4 log ₁₆ هي									
19	y = 6 a	$=\frac{1}{2}$ b	у	С	y = -2	d	<i>y</i> = 3			
۲.	باستعمال الآلة الحاسبة فإن	قيمة 0g 5	10							
	3,5540 a	990 b	0,69	С	2,4201	d	1,5689			

رجة	۲۰	رال الثاني/ ضعي علامة (√) أمام العبارة الصحيحة وعلامة (*) أمام العبارة الخاطئة	السؤ
خطأ	صح	مجموعة الأعداد الكلية هي {1,2,3,}	,
خطأ		من خصائص الدالة اللوغاريتمية أن مداها مجموعة الأعداد الحقيقة الموجبة فقط	۲
خطأ	1.5-60	$f(x) = \llbracket x rbracket$ يرمز لدالة القيمة المطلقة بالزمر	٣
خطأ	صح	$\displaystyle \lim_{x o c} f(x) eq f(c)$ تكون الدالة متصلة إذا كان	٤
خطأ	صع	تكون الدالة f متزايدة على فترة ما إذا وفقط إذا زادت قيم $f(x)$ كلما زادت قيم x في الفترة	٥
خطأ	صح	إذا وجدت قيمة عظمى محلية للدالة وكانت أكبر قيمة في مجالها سميت قيمة عظمى مطلقة	٦
خطأ	صح	y=0 يمكن الحصول على صفر الدالة عند التعويض ب	٧
خطأ	صح	x الدالة المتباينة كل قيمة x ترتبط بقيمة واحدة y ولا توجد قيمة y ترتبط بأكثر من قيمة	٨
خطأ	صح	$b^y=x$ صحيحة الدي يجعل المعادلة y الذي يجعل المعادلة	٩
خطأ	صح	تكون العبارة دالة إذا لم يقطع أي خط رأسي تمثيلها البياني في أكثر من نقطة	١.
خطأ	صح	لوغاريتم القوة يساوي حاصل ضرب الأس في لوغاريتم أساسها	11
خطأ	صح	U يأخذ منحنى الدالة التربيعية $f(x)=x^2$ شكل حرف	١٢
خطأ	صح	من خصائص القطع المكافئ أن له بؤرة واحدة ورأس واحد	۱۳
خطأ	صح	$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$	١٤
خطأ	صح	القطوع المخروطية هي الأشكال الناتجة عن تقاطع مستوى ما مع مخروطين دائريين قائمين متقابلين بالرأس	10
خطأ	صح	متوسط معدل التغير بين أي نقطتين على منحنى الدالة f هو ميل المستقيم المار بهاتين النقطتين	١٦
خطأ	صح	من خصائص دالة الاضمحلال الأسي أنها متزايدة	۱۷
خطأ	صح	إذا كانت $B^2-4AC < 0$ يكون القطع قطع زائد	۱۸
خطأ	صح	$\sin(A+B) = \cos A \cos B - \sin A \sin B$	19
خطأ	صح	القطع الناقص هو المحل الهندسي لمجموعة نقاط مستوية تبعد البعد نفسه عن نقطة ثابته تسمى البؤرة	۲٠

انتهت الأسئلة تمنياتي القلبية لكن بالتوفيق والنجاح معلمتكن /

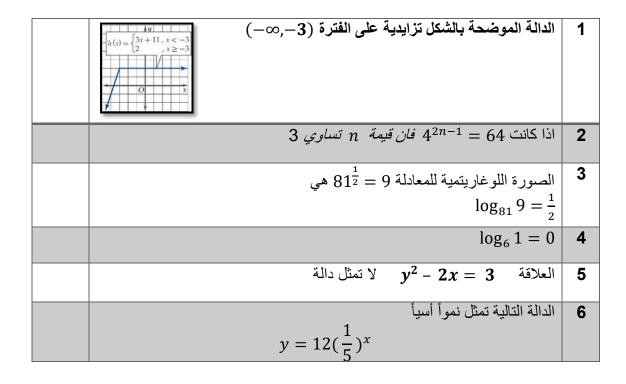
المملكة العربية السعودية متوسطة وثانوية عدد الأوراق:4 عدد الأسئلة: 2 وزارة التعليم Ministry of Education اختبار الفصل الدراسي الأول لمادة الرياضيات 3 لعام 1446 هـ السؤال الأول .. أ)ظللي الإجابة الصحيحة للعبارات الآتة (1 – 27) في الاختيار من متعدد: 30 المجموعة { {1,2,3,4,5, يعبر عنها بالصفة المميزة في المجموعة W بأي من الصور الاتية 1 *x* < 6 $x \ge 1$ x < 1x > 0تمثل باستخدام فترة على الصورة $-3 \le x < 5$ 2 -3,5[-3,5)(-3.5]الفترة [8,∞-) تكتب بالصورة 3 x < 8 $x \ge 8$ x > 8 $x \leq 8$ h(x) من الشكل مدى الدالة 4 [-1,6](-4, 4](-4.4)[-4,4] $h(x) = x^5 - 17x^3 + 16x$ 5 زوجية ليست زوجية ولا فردية زوجية و فردية فردية الدالة $f(x)=rac{1}{x^2}$ غير متصلة عند x=0 و نوع عدم الاتصال هو 6 نقطى قابل للاز الة لا نهائي قفز *ي* $f(x) = -x^4 - x^3 + 3x$ 7 الدالة الموضحة بالشكل لها قيمة عظمى مطلقة تساوي تقريبا -1.5 3 اذا کانت (f+g)(x) فان g(x)=9x , $f(x)=x^2+x$ تساوی 8 $x^2 + 10x$ $x^{2} + 9x$ $x^{2} + 8x$ من الشكل المنحنى المرسوم مع الدالة الام يعبر عن الدالة g(x) تساوي

|x - 4|

|x| + 4

ج

9


|x + 4|

|x|

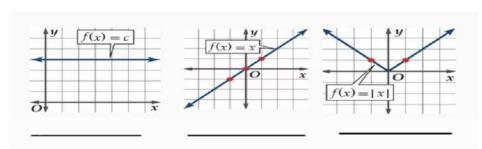
$[f+g](2)$ فان $f(x)=x^2+4x$, $g(x)=3x-5$	10
1	
x -4 -3 -2 -1 0 1 2 3 4 y	
[-1,0] \(\phi\) \(\ph	
حل المعادلة الاسية $125=5^{2x+1}$ هو x تساوي	12
أ 1 أ ب 0 أ ج 2 أ	
ا قيمة χ التي تحقق المعادلة $8>6^{2x-3}$ ؟	13
$X < \frac{6}{5}$ \searrow $X > \frac{15}{8}$ \Rightarrow $X < \frac{13}{8}$ \bigcirc $X < \frac{15}{8}$	
نيمة log ₃ 27 تساو <i>ي</i>	14
5 4 ج 2 1 3	
لصورة اللوغاريتمية $8=8$ $\log_2 8$ تكافيء الصورة الاسية	15
$2^3 = 8$ \Rightarrow $8^2 = 64$ \Rightarrow $3^2 = 8$	
$\log_8 16 = x$ المعادلة x في المعادلة	16
$\frac{1}{2}$ $\frac{4}{3}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{1}{2}$	
دا كانت $1.7712pprox 1$ فان القيمة النقريبية 100_3 نساوي ذا كانت	17
5.3136 ع	17
نيمة $\sqrt[3]{36}$ تساوي $\log_6 \sqrt[3]{36}$	18
$\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{3}{2}$ $\frac{2}{3}$	
لعبارة $\log_2 x + 5\log_2 y$ تكافيء	
$\log_3 x^2 \qquad \qquad \log_2 x^3 y^5 \qquad \Rightarrow \qquad 8\log_2(x+y) \qquad \because \qquad \log_3 x^2 y^5$	19
حل المعادلة $\log_2(x^2-4)=\log_23x$ هو	20
-2 ع ا -1 ع ا -2 ع ا -1 ع ا -2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
$\log_4 x > 3$ حل المتباينة	21
$x > \frac{4}{3} \qquad \qquad x > 12 \qquad \Rightarrow \qquad x > 81 \qquad \qquad \downarrow \qquad x > 64 \qquad \qquad \uparrow$	
نيمة log 7 لاقرب 4 ارقام عشرية	22
1.0686 □ 0.7521 → 0.8451 □ 0.0840 □	22
حل المعادلة $3^{lpha}=15$ لاقرب جزء من عشرة الاف هو	23

2.4650	7	0.6990	ج	2.5411	ب		j	
$ \begin{array}{c} 0 \\ x \\ \hline x \\ x \\ \hline x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ $				يكون المنحنى	تماثل	الشكل باستخدام اختبار اا	5.	24
غير متماثل	١	x متماثل حول محور	ج			متماثل حول نقطة الاصل	Í	
	h(3)	فإن : فإن		$h(x) = \begin{cases} x \\ 2x \end{cases}$	- 3 : + 1	$x \le 3$. کانت $x \ge 3$	إذا :	25
غير معرفة	د	0	ج	5	ب	7	ĺ	
				يلي هو	ة فيما	ثيل البياني الذي يمثل دالا	التما	
3	7	<i>y</i> , <i>y</i>	÷	y x	J·	y x	'n	26
y †				للدالة	بياني	عل المقابل يمثل التمثيل ال	الشك	27
f(x) = x	7	$f(x) = x^2$	ج	$f(x) = x^3$	·Ĺ	$f(x) = \sqrt{x}$	١	

(ب): ضعى صح او خطأ امام العبارات التالية:

10

السؤال الثاني: أ) صلى من العمود (ب) أمام رقم ما يناسبه من العمود (أ) (1-7) من المزاوجة:


(ب)	
$\{1,-2\}$	١
R	ب
3	ح
$\frac{\log_{10} 20}{\log_{10} 3}$	٦
انسحاب رأسي	هـ
$t \ge -1$	و
توسع افقي	.ب
$f^{-1}(x) = \frac{x - 9}{2}$	7
الدالة التربيعية	ط

(1)	م
f(x)=2x+9 الدالة التي تمثل الدالة العكسية للدالة	1
$25^{4t+1} \ge 125^{2t}$ حل المتباینة	2
التحويل الهندسي للدالة $f(x)=2^x$ للحصول على الدالة $f(x)=2^x+1$	3
يعبر عن كتابة $\log_3 20$ بدلالة اللوغاريتمات العشرية	4
إذا كانت: $f(x)=x^2-2$ فإن : المقطع للدالة الساوي	5
مجال الدالة $f(x) = 5^x$ هو	6
إذا كانت : $x^2+x-2+x=0$ فإن : أصفار الدالة $f(x)=x^2+x-2$	7
تمثيلها البياني على شكل حرف U	8

ب) اكملي الجدول الآتي حسب المطلوب الدالة تمثل الدالة اللوغاريتمية $f(x) = 3\log_{10}(x+1) - 4$

نوع التحويل:
مقداره :
نوع التحويل:
مقداره:
نوع التحويل:
مقداره:

ج)اكتبي اسم الدالة في كل مماياتي:

انتهت الأسئلة

معلمة المادة:

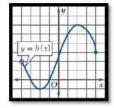
	المادة:
	المستوى:
	الصف:
	الزمن:
٢٤٤٦هـ	السنة الدراسية:

المملكة العربية السعودية وزارة التعليم إدارة التعليم بمحافظة مدرسة

	رقم الجلوس					اسم الطالبة
المجموع	السؤال الخامس	السؤال الرابع	السؤال الثالث	السؤال الثاني	السؤال الأول	رقم السؤال
						الدحة

السؤال الأول/

ضع/ي كلمة صح أوكلمة خطأ في الجدول أسفل حسب صحة الجملة أو خطأها ...


المجموعة $\{xIx>0x\in W\}$ يعبر عنها بالصفة المميزة في المجموعة $\{1,2,3,4,5,\dots \}$ يعبر عنها بالصفة المميزة المجموعة $\{xIx>0\}$

(-4,-1) باستعمال رمز الفترة على الصورة $-4 \le y < -1$ -2

$${f 20}$$
 وَانِ ${f v}(5)$ فإن ${f v}(t)= egin{cases} 4t\;,\;0\leq t\leq 15\ 60\;,\;15< t< 240\ -6t+1500\;,\;240\leq t\leq 250 \end{cases}$ -3

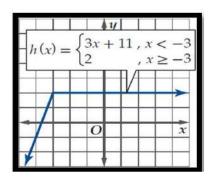
4- من الرسم البياني سلوك طرفي التمثيل البياني يقترب من 1

(-4,4]:h(x) من الشكل مجال الدالة -5

الدالة $f(x)=rac{2}{x^2}$ اليست فردية و لا زوجية f(x)

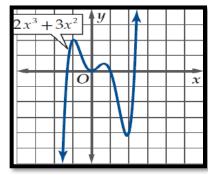
6 على الفترة $g(x)=3x^2-8x+2$ على الفترة g(x)=3 يساوي g(x)=3

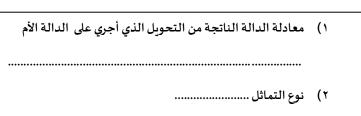
ه- الدالة $f(x) = rac{1}{x-5}$ غير متصلة ونوع عدم الاتصال لانهائي -8

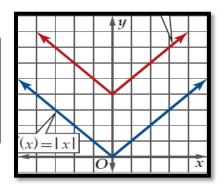

٨	٧	٦	٥	٤	٣	۲	١

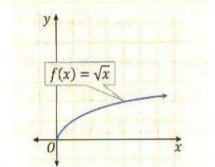
السؤال الثاني/


من الرسم التالي أجيب/ي حسب ما هو مطلوب:


والثابتة	والتناقص	التز ابد	فترات




القيم الصغرى وحددي نوعها


من الشكل االمجاور

أوجد/ي الخصائص التالية لدالة الرئيسة الأم لدالة الجذر التربيعي

٠١.	المجال:
۲.	المدى:
۳.	مقطع :: x مقطع
4	

السؤال الثالث:

ظلل/ي الإجابة الصحيحة في ورقة الإجابة:

						$y=3^x$. تسمى الدالة:
خطية	د	لوغارتمية	ج	اضمحلال أسي	ب	أ نمو أسي
	۲. إذا كانت $64 = 4^{2n-1}$ فإن قيمة n تساوي:					
2	د	0	3	1	ب	4 1
				هو $y = 2^{x+3} - 5$	الة:	٣. التحويل الهندسي الحاصل للد
تمدد رأسي	٦	انعكاس وتمدد	<u>ج</u>	انسحاب لأسفل ٣ وحدات وانسحاب أفقي ٥ وحدات لليمين	ب	انسحاب لأسفل ٥ وحدات أ وانسحاب أفقي ٣ وحدات لليسار
					32	$2x-1 \ge \frac{1}{243}$: حل المتباينة :
x < 2	د	$x \le 2$	ج	$x \ge -2$	ب	x > 2
				ن صورتها الأسية هي :	فإر	$\log_4 16 = 2$ إذا كانت: 0
$16^2 = 4$	د	$4^2 = 16$	ج	$2^{16} = 4$	ب	$2^4 = 16$
				ربها اللوغارتمية هي:	فإن صور	ر. إذا كانت : $5 = 125^{\frac{1}{3}}$. إذا كانت
$log_5 \frac{1}{3} = 125$	د	$log_{125} \frac{1}{3} = 5$	3	$log_5 125 = \frac{1}{3}$	ب	$log_{125} 5 = \frac{1}{3}$
					ا هو:	$\log_3 27$ أساس اللوغارتيم: $\log_3 27$
1	د	2	ج	27	ب	3 1
				$y = log_2(x + 1)$ هو:	1) + 3	 ٨. مقطع y للدالة اللوغارتمية:
3	٥	2	ج	1	ب	0 1
				\log_3 مقربة هي: ا	اً ، فإن ذ	log_3 7 $pprox 1.7712$: إذا كان 9
3.3136	٥	0.7712	ج	3.7712	ب	3.5424 1
	: إذا كان ي $g_8 = \frac{3}{4}$ فإن قيمة x هي المان يا المان المان يا المان قيمة المان الما					
x =2	2	x=8	3	x =16	ŗ	x=6
						$log_6\sqrt[3]{36}$: قيمة قيمة . ۱۸
$\frac{2}{3}$	د	3	3	4	ب	$\frac{3}{2}$
				$log_3(x^2 -$	- 15)	$= log_3 2x$: حل المعادلة . ۱۲
15	٥	5	3	-1	ب	-3 1

يال الرابع:
ضع/ي حرف (ص) أمام العبارة الصحيحة وحرف (خ) أمام الخاطئة:
ر کمیة غیر معرفه $log_{10}(-5)$ یساوی کمیة غیر معرفه $log_{10}(-5)$
$(\hspace{.1cm})$ يساوي 1 $\log_6 6$ يساوي 1
$(\hspace{.1cm})$ يساوي u_4 u_4 u_4 u_4 u_4 u_4 u_4
$() 2$ يساوي 2 $\log_9 81$ يساوي 2
٠- الخط التقاربي للدالة الأسية هو محور X ()
· الدالة الأسية متصلة على مجالها ()
() 0.6990 لأقرب 4 أرقام عشرية هو 1090 () $10g_{10}$ لأقرب 4 أرقام عشرية المرابة ()
،- يسمى اللوغارتيم ذو الأساس 10 باللوغارتيم العشري ()

السؤال الخامس:

اكتب/ي: $log_6 8$ بدلالة اللوغاربتمات العشرية ، ثم أوجد/ي قيمته مقربا إلى أقرب جزء من عشرة الآف	اكتب/ي العبارة اللوغارتمية بالصورة المطولة: $log_{13} \ 6 \ a^3b \ c^4$

انتهت الأسئلة

وفقك الله وسدد على درب الخير خطاك

المعلم/ة: